贪心(临项交换)+01背包,蓝桥云课 搬砖

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

0搬砖 - 蓝桥云课 (lanqiao.cn)


二、解题报告

1、思路分析

将物品按照w[i] + v[i]升序排序然后跑01背包就是答案

下面证明:(不要问怎么想到的,做题多了就能想到,和谷歌那道能量石一样的套路)
对于物品i, j, 前面已经有了W

现:w[i] + v[i] <= w[j] + v[j]

且j 能排在前面 ,我们要推出 i 是否也能在前面

因为j在前面所以,v[j] >= W   v[i] >= W + w[j]

结合[i] + v[i] <= w[j] + v[j]可推出:v[j] - w[i] >= v[i] - w[j] >= W

进而推出:v[j] >= W + w[i]
故i在前面时,v的价值大于前面的重量和,得证

那么对于任何一个最优解,我们按照w[] + v[]升序排序,不影响最优解的合法性,仍然得到最优解

换句话说,我们在原问题的集合中找到了一个小集合:w[] + v[]升序

且小集合中存在最优解

那么我们在这个小集合中跑01背包就能得到最优解

所以排序后跑01背包就行

注意倒序枚举时,容量初始为w[] + v[]

因为v[] >= m - w[] => m <= v[] + w[]

2、复杂度

时间复杂度: O(nlogn + Σ(v[i] + w[i]))空间复杂度:O(n)

3、代码详解

#include <bits/stdc++.h>

const int N = 1010;

int n, tot, m, f[200010];

struct node {
    int w, v;
    bool operator < (const node& x) const {
        return v + w <= x.v + x.w;
    }
} nodes[N];

int main () {
    std::cin >> n;
    for (int i = 0; i < n; i ++ ) std::cin >> nodes[i].w >> nodes[i].v, m += nodes[i].w;
    std::sort(nodes, nodes + n);

    for (int i = 0; i < n; i ++ )
        for (int j = std::min(m, nodes[i].w + nodes[i].v); j >= nodes[i].w; j -- )
            f[j] = std::max(f[j], f[j - nodes[i].w] + nodes[i].v);

    std::cout << *std::max_element(f, f + m + 1);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值