贪心 + 排序, CF 754D - Fedor and coupons

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

754D - Fedor and coupons


二、解题报告

1、思路分析

即求 k 个区间之交的最大值

我们要求区间长度自然要确定所交区间的左右端点

二元化最大值,我们可以固定一边,最大/小化另一边

我们考虑固定左端点,右端点如何取得最大值?

固定左端点st后,所选区间显然要满足左端点小于等于st,右端点要尽可能远

我们可以用数据结构辅助这一过程

我们考虑将区间按照左端点升序排序,然后遍历区间,这样遍历到的区间,前面的区间都满足左端点比当前小,我们只需用堆维护遍历过区间的右端点

如果堆的size = k,我们就用堆顶最左右端点和当前固定的左端点来对答案进行维护

2、复杂度

时间复杂度: O(NlogN)空间复杂度:O(N)

3、代码详解

 ​
#include <bits/stdc++.h>
using i64 = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
using PIII = std::pair<int, PII>;
const int inf = 1e9 + 7, P = 1e9 + 7;

void solve() {
    int n, k;
    std::cin >> n >> k;

    std::vector<std::array<int, 3>> segs(n);
    
    for (int i = 0; i < n; ++ i)
        std::cin >> segs[i][0] >> segs[i][1], segs[i][2] = i + 1;

    std::priority_queue<int, std::vector<int>, std::greater<int>> pq;

    std::sort(segs.begin(), segs.end(), [](auto& x, auto& y) {
        return x[0] < y[0];
    });

    int res = -1, st = -1;

    for (auto& [l, r, id] : segs) {
        pq.emplace(r);
        if (pq.size() == k + 1) pq.pop();
        if (pq.size() == k && pq.top() - l > res)
            st = l, res = pq.top() - l;
    }

    if (res == -1) {
        std::cout << 0 << '\n';
        for (int i = 1; i <= k; ++ i) std::cout << i << " \n"[i == k];
    }
    else{
        std::cout << res + 1 << '\n';
        for (auto& [l, r, id] : segs)
            if (k && l <= st && r >= st + res)
                std::cout << id << " \n"[-- k == 0];
    }
}


int main(int argc, char** argv) {
    std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
    int _ = 1;
    // std::cin >> _;
    while (_ --)
        solve();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>