一、题目
1、题目描述
2、输入输出
2.1输入
2.2输出
3、原题链接
二、解题报告
1、思路分析
即求 k 个区间之交的最大值
我们要求区间长度自然要确定所交区间的左右端点
二元化最大值,我们可以固定一边,最大/小化另一边
我们考虑固定左端点,右端点如何取得最大值?
固定左端点st后,所选区间显然要满足左端点小于等于st,右端点要尽可能远
我们可以用数据结构辅助这一过程
我们考虑将区间按照左端点升序排序,然后遍历区间,这样遍历到的区间,前面的区间都满足左端点比当前小,我们只需用堆维护遍历过区间的右端点
如果堆的size = k,我们就用堆顶最左右端点和当前固定的左端点来对答案进行维护
2、复杂度
时间复杂度: O(NlogN)空间复杂度:O(N)
3、代码详解
#include <bits/stdc++.h>
using i64 = long long;
using i128 = __int128;
using PII = std::pair<int, int>;
using PIII = std::pair<int, PII>;
const int inf = 1e9 + 7, P = 1e9 + 7;
void solve() {
int n, k;
std::cin >> n >> k;
std::vector<std::array<int, 3>> segs(n);
for (int i = 0; i < n; ++ i)
std::cin >> segs[i][0] >> segs[i][1], segs[i][2] = i + 1;
std::priority_queue<int, std::vector<int>, std::greater<int>> pq;
std::sort(segs.begin(), segs.end(), [](auto& x, auto& y) {
return x[0] < y[0];
});
int res = -1, st = -1;
for (auto& [l, r, id] : segs) {
pq.emplace(r);
if (pq.size() == k + 1) pq.pop();
if (pq.size() == k && pq.top() - l > res)
st = l, res = pq.top() - l;
}
if (res == -1) {
std::cout << 0 << '\n';
for (int i = 1; i <= k; ++ i) std::cout << i << " \n"[i == k];
}
else{
std::cout << res + 1 << '\n';
for (auto& [l, r, id] : segs)
if (k && l <= st && r >= st + res)
std::cout << id << " \n"[-- k == 0];
}
}
int main(int argc, char** argv) {
std::ios::sync_with_stdio(false), std::cin.tie(0), std::cout.tie(0);
int _ = 1;
// std::cin >> _;
while (_ --)
solve();
return 0;
}