思维+二分,CF 1019B - The hat

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

1019B - The hat


二、解题报告

1、思路分析

一个很关键的信息就是 相邻两个人拿到的数相差1

亦即相邻两个人拿到数字的奇偶性不同

如果 n 不为 4 的倍数,那么n / 2为奇数,那么 a[i] 和 a[i + n / 2] 奇偶性一定不同,我们进行特判即可

我们定义函数 f(i) = a[i] - a[i + n / 2]. g(i) = a[i] - a[i - n / 2]

我们发现如果a[i] 不等 a[i + n / 2],那么f(i) 和 g(i + n / 2)符号一定不同

而由于相邻两个人数字相差1,故 i 每变化1,其f / g值最多变化-2,0, 2,也就是说两个符号不同的值之间一定存在我们所要求的解

那么我们先提前求出f(1) 和 g(1 + n / 2),然后不断二分即可

2、复杂度

时间复杂度: O(2 logn + 2)空间复杂度:O(1)

3、代码详解

 ​
#include <bits/stdc++.h>

using i64 = long long;
using i32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;

constexpr int inf32 = 1E9 + 7;
constexpr i64 inf64 = 1E18 + 7;
constexpr int P = 998'244'353;

int query(int x) {
	std::cout << "? " << x << std::endl;

	int res;
	std::cin >> res;
	
	return res;
}

void solve() {
	int n;
	std::cin >> n;

	if (n & 2) {
		std::cout << "! -1" << std::endl;
		return;
	}

	int l = query(1), r = query(1 + n / 2);

	int f = l == r ? 0 : (l < r ? 1 : -1);
	if (f == 0) {
		std::cout << "! " << 1 << std::endl;
		return;
	}

	int lo = 1, hi = n / 2 + 1;

	while (lo < hi) {
		int x = lo + hi >> 1;
		l = query(x), r = query(x + n / 2);
		int nf = l == r ? 0 : (l < r ? 1 : -1);

		if (nf == 0) {
			std::cout << "! " << x << std::endl;
			return;
		}

		if (nf == f)
			lo = x + 1;
		else
			hi = x;
	}

	std::cout << "! " << -1 << std::endl;
}

auto FIO = []{
	std::ios::sync_with_stdio(false);
	std::cin.tie(nullptr);
	std::cout.tie(nullptr);
	return 0;
}();

int main () {
	#ifdef DEBUG
		freopen("in.txt", "r", stdin);
		freopen("out.txt", "w", stdout);
	#endif
	
	int T = 1;
	// std::cin >> T;
	while (T --) {
		solve();
	}

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EQUINOX1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值