动态规划:背包问题

14 篇文章 0 订阅
10 篇文章 0 订阅
本文介绍了动态规划在解决0-1背包问题和完全背包问题中的应用。0-1背包问题中物品数量有限,而完全背包问题中物品可无限获取。动态规划模板展示了两种问题的解决思路,特别地,完全背包问题中要考虑物品可重复放入的情况。
摘要由CSDN通过智能技术生成

0-1背包问题 和 完全背包问题 的区别在于:

前者每个物品的个数是有限的;后者每个物品的个数是无限的。
也就是为什么当选择将当前物品放进背包时完全背包是dp[i][…]而不是dp[i-1][…]

动态规划框架:
在这里插入图片描述
0-1背包模板:
在这里插入图片描述
完全背包模板:

for(int i=1;i<=n;i++){
            for(int j=1;j<=amount;j++){
                if(j<coins[i-1]){
                    dp[i][j] = dp[i-1][j];
                }
                else{
                    dp[i][j] = dp[i-1][j]+dp[i][j-coins[i-1]];
                    //注意是如果放进背包是dp[i]代表可重复
                }
            }
        }
        return dp[n][amount];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值