动态规划之背包问题

1、问题描述
已知:有一个容量为V的背包和N件物品,第i件物品的重量是weight[i],收益是cost[i]。
条件:每种物品都有无限件,能放多少就放多少。
问题:在不超过背包容量的情况下,最多能获得多少价值或收益

2、看到这个问题,可能会想到贪心算法,但是贪心其实是不对的。例如最少硬币找零问题,要用动态规划。动态规划思想就是解决子问题并记录子问题的解,这样就不用重复解决子问题了。所以贪心用到的情况真的很少很少的感觉,以前老把这两个弄混。

3、01背包与完全背包

  01背包就是有N件物品,不重复的,每个只能取一次,而完全背包就是每件物品都有一定数量数量,有多少就可以拿多少。
  
4、01背包问题
  状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] }

  f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值。
  Pi表示第i件物品的价值。
  决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ?
  这里写图片描述

  首先要明确这张表是至底向上,从左到右生成的。

  为了叙述方便,用e2单元格表示e行2列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为2的背包,那么这个背包的最大价值是0,因为e物品的重量是4,背包装不了。也就是选择c,那么物品只有c,d,e选择b,物品就是b,c,d,e。

  对于d2单元格,表示只有物品e,d时,承重为2的背包,所能装入的最大价值,仍然是0,因为物品e,d都不是这个背包能装的。

  同理,c2=0,b2=3,a2=6。

  对于承重为8的背包,a8=15,是怎么得出的呢?

  根据01背包的状态转换方程,需要考察两个值,

  一个是f[i-1,j],对于这个例子来说就是b8的值9,另一个是f[i-1,j-Wi]+Pi;

在这里。

  f[i-1,j]表示我有一个承重为8的背包,当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

  f[i-1,j-Wi]表示我有一个承重为6的背包(等于当前背包承重减去物品a的重量),当只有物品b,c,d,e四件可选时,这个背包能装入的最大价值

  f[i-1,j-Wi]就是指单元格b6,值为9,Pi指的是a物品的价值,即6

  由于f[i-1,j-Wi]+Pi = 9 + 6 = 15 大于f[i-1,j] = 9,所以物品a应该放入承重为8的背包。
  也就是我们判断每一个物品要不要放的情况,都是判断不放这个最后的价值多少,假设放进去,前面剩下的空间最大的价值加上这个物品的价值是多少,比较两个的大小,判断这个物品是否需要放进去。
  

    #include<iostream>  
    using namespace std;   
    unsigned int f[10];
    unsigned int weight[10];  
    unsigned int value[10];  
    #define  max(x,y)   (x)>(y)?(x):(y)  
    int main()  
    {  

        int N,M;  
        cin>>N;//物品个数  
        cin>>M;//背包容量  
        for (int i=1;i<=N; i++)  
        {  
            cin>>weight[i]>>value[i];  
        }  
       for (int i=1; i<=N; i++)  
         for (int j=M; j>=weight[i]; j--)    
           f[j] = max(f[j], f[j-weight[i]]+value[i]);  

        cout<<f[M]<<endl;//输出最优解  

    }  

5、完全背包问题
  转化方程:f[i][j] = max(f[i-1][j],f[i - K * W[i]] + K * Pi); 其中 1 <= K * weight[i] <= v,(v指此时背包容量)
  同样意思是,找出不加这个物品所能装的最大价值,和减去k个新物品质量用前几个物品的最大价值加上k个新物品的最大价值相比较,得出最高价值的。也就是比01背包问题多了一个k个新物品而已。

    #include<iostream>  
    using namespace std;  
    #define  V 1500  
    unsigned int f[V];//全局变量,自动初始化为0  
    unsigned int weight[10];  
    unsigned int value[10];  
    #define  max(x,y)   (x)>(y)?(x):(y)  
    int main()  
    {  

        int N,M;  
        cin>>N;//物品个数  
        cin>>M;//背包容量  
        for (int i=1;i<=N; i++)  
        {  
            cin>>weight[i]>>value[i];  
        }  
        for (int i=1; i<=N; i++)  
            for (int j=weight[i]; j<=M; j++)  
               f[j] = max(f[j], f[j-weight[i]]+value[i]);  

        cout<<f[M]<<endl;//输出最优解  

    }  

  这里我们可以看出完全背包问题与01背包的算法在j的取值循环上有一点区别,可以这样理解,都是物品数量增加这是外面的大循环,然后看01背包的算法,从M到weight[i],如果加入新物品价值高就取,那么无论j怎么取,这个f[j]里永远只有一个新物品,因为质量从大到小,每次f[j-weight[i]]肯定是没有新物品在里面的,所以所有的选择都是一次。然后看完全背包的,从weight[i]到M,当j增加的时候,比如新物品质量是2,那么f[2]里可能放入了新物品,那么f[4],就可能放入两次新物品。一切就理清楚了哈哈哈,记录下来,说不定晚上又混了。。。。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值