Γ \Gamma Γ函数
0.前言
本文是吴崇试的《数学物理方法》第七章学习笔记。今天是数学物理方法Ⅱ上课的第一天,老师在课上简单复习了一下上个学期数学物理方法I的内容,笔者闲着没事,总觉得梁昆淼先生的书不太够味儿,便开始翻弄起手头吴崇试先生的数理方法开始看。新学期心血来潮,选了几章打算认真看看: Γ \Gamma Γ函数、球函数、柱函数、格林函数法。今儿个咱就先看这个可爱的 Γ \Gamma Γ函数。
根据笔者的观测,这一章主要阐述了三大函数的两大作用。三大函数分别是: Γ \Gamma Γ函数、 ψ \psi ψ函数和 B \Beta B函数。两大作用分别是:化简积分和化简级数。
1. Γ \Gamma Γ函数
1.1 Γ \Gamma Γ函数的定义
我们先定义一种较为弱化的
Γ
\Gamma
Γ函数:
Γ
(
z
)
=
∫
0
∞
e
−
t
t
z
−
1
d
t
,
Re
z
>
0
\Gamma(z)=\int_0^\infty e^{-t}t^{z-1}dt,\text{Re} z>0
Γ(z)=∫0∞e−ttz−1dt,Rez>0
容易看出,上述定义的
Γ
\Gamma
Γ函数只在复平面的右半平面有定义。
我们接下来要证明这种定义在整个右半平面上都是良好定义的,也就是说对于右半平面上的每一个复数 z z z, Γ ( z ) \Gamma(z) Γ(z)都存在。
证明之前,我们需要牢记一条准则:要证明一个函数是解析函数,只需要证明它在某个区域内一致收敛即可。由于
Γ
\Gamma
Γ函数既是反常积分,又是瑕积分,我们将积分拆成如下两部分:
Γ
(
z
)
=
∫
0
1
e
−
t
t
z
−
1
d
t
+
∫
1
∞
e
−
t
t
z
−
1
d
t
\Gamma(z)=\int_0^1 e^{-t}t^{z-1}dt+\int_1^\infty e^{-t}t^{z-1}dt
Γ(z)=∫01e−ttz−1dt+∫1∞e−ttz−1dt
先看反常积分部分,也就是第二部分,注意到
e
t
=
∑
t
n
n
!
e^t=\sum\dfrac{t^n}{n!}
et=∑n!tn,因此对于任意正整数
N
,
e
t
>
t
N
N
!
N,e^t>\dfrac{t^N}{N!}
N,et>N!tN,也就是说
e
−
t
<
N
!
t
N
e^{-t}<\dfrac{N!}{t^N}
e−t<tNN!。于是对于复平面内任意有界闭区域
G
ˉ
,
∃
x
0
,
∀
z
∈
G
ˉ
\bar{G},\exists x_0,\forall z\in \bar G
Gˉ,∃x0,∀z∈Gˉ,均有
Re
z
<
x
0
\text{Re} z < x_0
Rez<x0.因此
∣
e
−
t
t
z
−
1
∣
=
[
(
e
−
t
t
z
−
1
)
(
e
−
t
t
z
−
1
)
∗
]
1
/
2
=
(
e
−
2
t
t
2
Re
z
−
2
)
1
/
2
=
e
−
t
t
Re
z
−
1
<
e
−
t
t
x
0
−
1
<
N
!
t
x
0
−
N
−
1
|e^{-t}t^{z-1}|=[(e^{-t}t^{z-1})(e^{-t}t^{z-1})^*]^{1/2}=(e^{-2t}t^{2 \text{Re} z-2})^{1/2}=e^{-t}t^{\text{Re}z-1}<e^{-t}t^{x_0-1}<N!t^{x_0-N-1}
∣e−ttz−1∣=[(e−ttz−1)(e−ttz−1)∗]1/2=(e−2tt2Rez−2)1/2=e−ttRez−1<e−ttx0−1<N!tx0−N−1
注意此时
t
≥
1
t\geq1
t≥1。
选取足够大的 N > x 0 N>x_0 N>x0,就可以使积分 ∫ 1 ∞ t x 0 − N − 1 d t \int_1^\infty t^{x_0-N-1}dt ∫1∞tx0−N−1dt收敛,进而 Γ \Gamma Γ函数的第二部分在全复平面解析。
接下来看瑕积分部分,也就是第一部分。由前已知:
∣
e
−
t
t
z
−
1
∣
=
e
−
t
t
Re
z
−
1
|e^{-t}t^{z-1}|=e^{-t}t^{\text{Re}z-1}
∣e−ttz−1∣=e−ttRez−1
因此,
∀
δ
>
0
\forall \delta >0
∀δ>0,都使得右半平面的任意闭区域中的任意一点
z
z
z都有
Re
z
=
x
≥
δ
>
0
\text{Re} z = x\geq\delta>0
Rez=x≥δ>0。因此
∣
e
−
t
t
z
−
1
∣
≤
t
δ
−
1
|e^{-t}t^{z-1}|\leq t^{\delta-1}
∣e−ttz−1∣≤tδ−1
同时下述积分收敛
∫
0
1
t
δ
−
1
d
t
=
∫
∞
1
(
1
u
)
δ
−
1
d
(
1
u
)
=
∫
1
∞
u
−
δ
−
1
d
u
,
δ
>
0
\int_0^1t^{\delta-1}dt=\int^1_\infty(\dfrac{1}{u})^{\delta-1}d(\frac{1}{u})=\int_1^\infty u^{-\delta-1} du,\delta>0
∫01tδ−1dt=∫∞1(u1)δ−1d(u1)=∫1∞u−δ−1du,δ>0
综上,我们根据目前为止的定义证明了
Γ
(
z
)
\Gamma(z)
Γ(z)在右半平面上处处解析。基于此,我们可以做一点小小的推广:
Γ
(
z
)
=
∫
L
e
−
t
t
z
−
1
d
t
\Gamma(z)=\int_Le^{-t}t^{z-1}dt
Γ(z)=∫Le−ttz−1dt
其中
L
L
L是从原点引出的一条射线,其与
x
x
x轴的夹角
θ
∈
(
−
π
2
,
π
2
)
\theta\in(-\frac{\pi}{2},\frac{\pi}{2})
θ∈(−2π,2π)。该推广的证明可以考虑射线
L
L
L与
x
x
x轴正半轴以及无穷远处的一道圆弧组合成的回路。注意到被积函数在右半平面是没有留数的,而无穷远处的圆弧积分根据约当定理自动归零。因此,任何从0到正无穷的积分都可以转移到射线
L
L
L上。
1.2 Γ \Gamma Γ函数的性质
- 性质1
Γ ( 1 ) = 1 \Gamma(1)=1 Γ(1)=1 - 性质2
Γ ( z + 1 ) = z Γ ( z ) \Gamma(z+1)=z\Gamma(z) Γ(z+1)=zΓ(z)
一方面,我们根据性质1和性质2可以推出对于任意整数
n
n
n都有
Γ
(
n
+
1
)
=
n
!
\Gamma(n+1)=n!
Γ(n+1)=n!
另一方面,我们将性质2等式两侧同除
z
z
z得到
Γ
(
z
)
=
1
z
Γ
(
z
+
1
)
\Gamma(z)=\dfrac{1}{z}\Gamma(z+1)
Γ(z)=z1Γ(z+1)
于是我们可以把
Γ
(
z
)
\Gamma(z)
Γ(z)延拓到
Re
z
>
−
1
\text{Re}z > -1
Rez>−1的区域。重复这种操作,我们可以陆续得到
Γ
(
z
)
=
1
z
1
z
+
1
Γ
(
z
+
2
)
\Gamma(z)=\dfrac{1}{z}\dfrac{1}{z+1}\Gamma(z+2)
Γ(z)=z1z+11Γ(z+2)
⋮
\vdots
⋮
Γ
(
z
)
=
1
z
1
z
+
1
⋯
1
z
+
n
−
1
Γ
(
z
+
n
)
\Gamma(z)=\dfrac{1}{z}\dfrac{1}{z+1}\cdots\dfrac{1}{z+n-1}\Gamma(z+n)
Γ(z)=z1z+11⋯z+n−11Γ(z+n)
于是我们成功地将
Γ
(
z
)
\Gamma(z)
Γ(z)延拓到了整个复平面,同时还注意到每个非正整数都是
Γ
(
z
)
\Gamma(z)
Γ(z)的一阶极点:
res
Γ
(
−
n
)
=
(
−
1
)
n
n
!
\text{res}\Gamma(-n)=\dfrac{(-1)^n}{n!}
resΓ(−n)=n!(−1)n
此外我们再介绍一个重要的性质
Γ
(
z
)
Γ
(
1
−
z
)
=
π
sin
π
z
\Gamma(z)\Gamma(1-z)=\dfrac{\pi}{\sin \pi z}
Γ(z)Γ(1−z)=sinπzπ
其证明我们会在第四节给出。
2. ψ \psi ψ函数
ψ \psi ψ函数的定义如下
ψ ( z ) = d ln Γ ( z ) d z = Γ ′ ( z ) Γ ( z ) \psi(z)=\dfrac{d \ln\Gamma(z)}{dz}=\dfrac{\Gamma'(z)}{\Gamma(z)} ψ(z)=dzdlnΓ(z)=Γ(z)Γ′(z)
性质:
- z = 0 , − 1 , − 2 , ⋯ z=0,-1,-2,\cdots z=0,−1,−2,⋯都是 ψ ( z ) \psi(z) ψ(z)的一阶极点,留数均为-1;除了这些点以外, ψ ( z ) \psi(z) ψ(z)在全复平面解析;
- ψ ( z + 1 ) = ψ ( z ) + 1 z , ψ ( z + n ) = ψ ( z ) + 1 z + 1 z + 1 + ⋯ + 1 z + n − 1 \psi(z+1)=\psi(z)+\dfrac{1}{z},\psi(z+n)=\psi(z)+\dfrac{1}{z}+\dfrac{1}{z+1}+\cdots+\dfrac{1}{z+n-1} ψ(z+1)=ψ(z)+z1,ψ(z+n)=ψ(z)+z1+z+11+⋯+z+n−11
(注意末项不是 1 z + n \dfrac{1}{z+n} z+n1而是 1 z + n − 1 \dfrac{1}{z+n-1} z+n−11)
- ψ ( 1 − z ) = ψ ( z ) + π cot π z \psi(1-z)=\psi(z)+\pi\cot\pi z ψ(1−z)=ψ(z)+πcotπz
- ψ ( z ) − ψ ( − z ) = − 1 z − π cot π \psi(z)-\psi(-z)=-\dfrac{1}{z}-\pi\cot\pi ψ(z)−ψ(−z)=−z1−πcotπ
- lim n → ∞ [ ψ ( z + n ) − ln n ] = 0 \lim_{n\rightarrow\infty}[\psi(z+n)-\ln n]=0 n→∞lim[ψ(z+n)−lnn]=0
ψ ( z ) \psi(z) ψ(z)的两大作用分别是化简积分和化简级数。我们先从化简积分开始。
2.1 使用 ψ ( z ) \psi(z) ψ(z)化简积分
计算积分 ∫ 0 π sin 2 n θ sin θ d θ \int_0^\pi\dfrac{\sin^2n\theta}{\sin \theta}d\theta ∫0πsinθsin2nθdθ
取半径为1的半圆围道,根据留数定理
∮
z
2
n
−
1
z
2
−
1
d
z
=
∫
0
π
e
i
2
n
θ
−
1
e
i
2
θ
−
1
e
i
θ
i
d
θ
+
∫
−
1
1
x
2
n
−
1
x
2
−
1
d
x
=
0
\oint\dfrac{z^{2n}-1}{z^2-1}dz=\int_0^\pi\dfrac{e^{i2n\theta}-1}{e^{i2\theta}-1}e^{i\theta}id\theta+\int_{-1}^1\dfrac{x^{2n}-1}{x^2-1}dx=0
∮z2−1z2n−1dz=∫0πei2θ−1ei2nθ−1eiθidθ+∫−11x2−1x2n−1dx=0
等式右侧等于0是由于围道内没有留数。
∫
0
π
e
i
2
n
θ
−
1
e
i
2
θ
−
1
e
i
θ
i
d
θ
=
∫
0
π
cos
2
n
θ
−
1
+
i
sin
2
n
θ
2
sin
θ
d
θ
=
−
∫
0
π
sin
2
n
θ
sin
θ
d
θ
+
i
2
∫
0
π
sin
2
n
θ
sin
θ
d
θ
\int_0^\pi\dfrac{e^{i2n\theta}-1}{e^{i2\theta}-1}e^{i\theta}id\theta=\int_0^\pi\dfrac{\cos 2n\theta-1+i\sin 2n\theta}{2\sin\theta}d\theta=-\int_0^\pi\dfrac{\sin^2n\theta}{\sin\theta}d\theta+\dfrac{i}{2}\int_0^\pi\dfrac{\sin 2n\theta}{\sin\theta}d\theta
∫0πei2θ−1ei2nθ−1eiθidθ=∫0π2sinθcos2nθ−1+isin2nθdθ=−∫0πsinθsin2nθdθ+2i∫0πsinθsin2nθdθ
同时
∫
−
1
1
x
2
n
−
1
x
2
−
1
d
x
=
∫
−
1
1
(
x
2
n
−
2
+
x
2
n
−
4
+
⋯
+
1
)
d
x
=
2
(
1
2
n
−
1
+
1
2
n
−
3
+
⋯
+
1
3
+
1
1
)
=
ψ
(
n
+
1
2
)
−
ψ
(
1
2
)
\int_{-1}^1\dfrac{x^{2n}-1}{x^2-1}dx=\int_{-1}^1\big(x^{2n-2}+x^{2n-4}+\cdots+1\big)dx=2\bigg(\dfrac{1}{2n-1}+\dfrac{1}{2n-3}+\cdots+\dfrac{1}{3}+\dfrac{1}{1}\bigg)=\psi(n+\dfrac{1}{2})-\psi(\dfrac{1}{2})
∫−11x2−1x2n−1dx=∫−11(x2n−2+x2n−4+⋯+1)dx=2(2n−11+2n−31+⋯+31+11)=ψ(n+21)−ψ(21)
因此
−
∫
0
π
sin
2
n
θ
sin
θ
d
θ
+
i
2
∫
0
π
sin
2
n
θ
sin
θ
d
θ
+
ψ
(
n
+
1
2
)
−
ψ
(
1
2
)
=
0
-\int_0^\pi\dfrac{\sin^2n\theta}{\sin\theta}d\theta+\dfrac{i}{2}\int_0^\pi\dfrac{\sin 2n\theta}{\sin\theta}d\theta+\psi(n+\dfrac{1}{2})-\psi(\dfrac{1}{2})=0
−∫0πsinθsin2nθdθ+2i∫0πsinθsin2nθdθ+ψ(n+21)−ψ(21)=0
比较实虚部得到
∫
0
π
sin
2
n
θ
sin
θ
d
θ
=
ψ
(
n
+
1
2
)
−
ψ
(
1
2
)
,
∫
0
π
sin
2
n
θ
sin
θ
d
θ
=
0
\int_0^\pi\dfrac{\sin^2n\theta}{\sin\theta}d\theta=\psi(n+\dfrac{1}{2})-\psi(\dfrac{1}{2}),\int_0^\pi\dfrac{\sin 2n\theta}{\sin\theta}d\theta=0
∫0πsinθsin2nθdθ=ψ(n+21)−ψ(21),∫0πsinθsin2nθdθ=0
2.2 使用 ψ ( z ) \psi(z) ψ(z)化简级数
在本节我们将使用 ψ ( z ) \psi(z) ψ(z)最后一个性质: lim n → ∞ [ ψ ( z + n ) − ln n ] = 0 \lim_{n\rightarrow\infty}[\psi(z+n)-\ln n]=0 n→∞lim[ψ(z+n)−lnn]=0
2.2.1 仅包含一阶极点的情形
考虑如下形式的无穷级数
∑
n
=
0
∞
u
n
=
∑
n
=
0
∞
p
(
n
)
d
(
n
)
\sum^\infty_{n=0}u_n=\sum^\infty_{n=0}\dfrac{p(n)}{d(n)}
n=0∑∞un=n=0∑∞d(n)p(n)
其中
p
(
n
)
,
d
(
n
)
p(n),d(n)
p(n),d(n)均为
n
n
n的多项式.设
d
(
n
)
d(n)
d(n)是
n
n
n的
m
m
m次多项式,并且零点都是一阶零点,
d
(
n
)
=
(
n
+
x
1
)
(
n
+
x
2
)
⋯
(
n
+
x
m
)
d(n)=(n+x_1)(n+x_2)\cdots(n+x_m)
d(n)=(n+x1)(n+x2)⋯(n+xm)
此时
u
n
u_n
un可以裂项为多个一次分式相加:
u
n
=
∑
k
=
1
m
a
k
n
+
x
k
u_n=\sum^m_{k=1}\dfrac{a_k}{n+x_k}
un=k=1∑mn+xkak
为了保证
u
n
u_n
un和
∑
u
n
\sum u_n
∑un收敛,我们有
lim
n
→
∞
=
lim
n
→
∞
n
⋅
u
n
=
0
⇒
∑
k
=
1
m
a
k
=
0
\lim_{n\to\infty}=\lim_{n\to\infty}n\cdot u_n=0\Rightarrow\sum^m_{k=1}a_k=0
n→∞lim=n→∞limn⋅un=0⇒k=1∑mak=0
因此无穷级数的部分和
∑
n
=
0
N
u
n
=
∑
k
=
1
m
a
k
[
ψ
(
x
k
+
N
)
−
ψ
(
x
k
)
]
−
ln
N
⋅
0
=
∑
k
=
1
m
a
k
[
ψ
(
x
k
+
N
)
−
ψ
(
x
k
)
]
−
∑
k
=
1
m
ln
N
a
k
\sum^N_{n=0}u_n=\sum^m_{k=1}a_k\big[\psi(x_k+N)-\psi(x_k)\big]-\ln N \cdot 0=\sum^m_{k=1}a_k\big[\psi(x_k+N)-\psi(x_k)\big]-\sum^m_{k=1} \ln N a_k
n=0∑Nun=k=1∑mak[ψ(xk+N)−ψ(xk)]−lnN⋅0=k=1∑mak[ψ(xk+N)−ψ(xk)]−k=1∑mlnNak
注意到
lim
n
→
∞
[
ψ
(
z
+
N
)
−
ln
N
]
=
0
\lim_{n\rightarrow\infty}[\psi(z+N)-\ln N]=0
n→∞lim[ψ(z+N)−lnN]=0
立即得到
∑
n
=
0
N
u
n
=
−
∑
k
=
1
m
a
k
ψ
(
x
k
)
\sum^N_{n=0}u_n=-\sum^m_{k=1}a_k\psi(x_k)
n=0∑Nun=−k=1∑makψ(xk)
一般来说,我们只需要先将级数通项裂项,将形如
A
n
+
x
0
\dfrac{A}{n+x_0}
n+x0A的分式对应换成
−
A
ψ
(
x
0
)
-A\psi(x_0)
−Aψ(x0),最后扔掉求和符号即可。注意,
n
n
n前的系数一定是1。
∑
n
=
0
∞
1
(
3
n
+
2
)
(
n
+
1
)
=
∑
n
=
0
∞
−
1
3
n
+
2
+
1
3
n
+
1
=
−
(
−
1
3
)
ψ
(
2
3
)
−
1
3
ψ
(
1
)
\sum^\infty_{n=0}\dfrac{1}{(3n+2)(n+1)}=\sum^\infty_{n=0}\dfrac{-1}{3n+2}+\dfrac{\dfrac{1}{3}}{n+1}=-(-\dfrac{1}{3})\psi(\dfrac{2}{3})-\dfrac{1}{3}\psi(1)
n=0∑∞(3n+2)(n+1)1=n=0∑∞3n+2−1+n+131=−(−31)ψ(32)−31ψ(1)
2.2.2 仅包含一阶极点与二阶极点的情形
设分母分式为
d
(
n
)
=
(
n
+
x
1
)
(
n
+
x
2
)
⋯
(
n
+
x
m
)
(
n
+
y
1
)
2
⋯
(
n
+
y
l
)
2
d(n)=(n+x_1)(n+x_2)\cdots(n+x_m)(n+y_1)^2\cdots(n+y_l)^2
d(n)=(n+x1)(n+x2)⋯(n+xm)(n+y1)2⋯(n+yl)2
依旧裂项:
u
n
=
∑
k
=
1
m
a
k
n
+
x
k
+
∑
k
=
1
l
[
b
k
1
n
+
y
k
+
b
k
2
(
n
+
y
k
)
2
]
u_n=\sum^m_{k=1}\dfrac{a_k}{n+x_k}+\sum^l_{k=1}\bigg[\dfrac{b_{k1}}{n+y_k}+\dfrac{b_{k2}}{(n+y_k)^2}\bigg]
un=k=1∑mn+xkak+k=1∑l[n+ykbk1+(n+yk)2bk2]
相应地,级数收敛条件为
∑
k
=
1
m
a
k
+
∑
k
=
1
l
b
k
1
=
0
\sum^m_{k=1}a_k+\sum^l_{k=1}b_{k1}=0
k=1∑mak+k=1∑lbk1=0
于是得到
∑
n
=
0
∞
u
n
=
−
∑
k
=
1
m
a
k
ψ
(
x
k
)
−
∑
k
=
1
l
[
b
k
1
ψ
(
y
k
)
−
b
k
2
ψ
′
(
y
k
)
]
\sum^\infty_{n=0}u_n=-\sum^m_{k=1}a_k\psi(x_k)-\sum^l_{k=1}\bigg[b_{k1}\psi(y_k)-b_{k2}\psi'(y_k)\bigg]
n=0∑∞un=−k=1∑makψ(xk)−k=1∑l[bk1ψ(yk)−bk2ψ′(yk)]
3. B \Beta B函数
B
\Beta
B函数定义如下
B
(
p
,
q
)
=
∫
0
1
t
p
−
1
(
1
−
t
)
q
−
1
d
t
,
Re
p
>
0
,
Re
q
>
0
B(p,q)=\int_0^1t^{p-1}(1-t)^{q-1}dt,\text{Re } p >0,\text{Re }q >0
B(p,q)=∫01tp−1(1−t)q−1dt,Re p>0,Re q>0
令
t
=
sin
2
θ
t=\sin^2\theta
t=sin2θ,改写定义为
B
(
p
,
q
)
=
2
∫
0
π
/
2
sin
2
p
−
1
θ
cos
2
q
−
1
θ
d
θ
,
Re
p
>
0
,
Re
q
>
0
B(p,q)=2\int_0^{\pi/2}\sin^{2p-1}\theta\cos^{2q-1}\theta d\theta,\text{Re } p >0,\text{Re }q >0
B(p,q)=2∫0π/2sin2p−1θcos2q−1θdθ,Re p>0,Re q>0
此外,利用
Γ
\Gamma
Γ函数也可以改写
B
\Beta
B函数
B
(
p
,
q
)
=
Γ
(
p
)
Γ
(
q
)
Γ
(
p
+
q
)
B(p,q)=\dfrac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}
B(p,q)=Γ(p+q)Γ(p)Γ(q)
证明
Γ
(
p
)
Γ
(
q
)
=
2
∫
0
∞
e
−
x
2
x
2
p
−
1
d
x
⋅
2
∫
0
∞
e
−
y
2
y
2
q
−
1
d
y
=
4
∫
0
∞
∫
0
∞
e
−
(
x
2
+
y
2
)
x
2
p
−
1
y
2
q
−
1
d
x
d
y
\Gamma(p)\Gamma(q)=2\int_0^\infty e^{-x^2}x^{2p-1}dx\cdot2\int_0^\infty e^{-y^2}y^{2q-1}dy=4\int_0^\infty\int_0^\infty e^{-(x^2+y^2)}x^{2p-1}y^{2q-1}dxdy
Γ(p)Γ(q)=2∫0∞e−x2x2p−1dx⋅2∫0∞e−y2y2q−1dy=4∫0∞∫0∞e−(x2+y2)x2p−1y2q−1dxdy
换至极坐标:
4
∫
0
∞
∫
0
∞
e
−
(
x
2
+
y
2
)
x
2
p
−
1
y
2
q
−
1
d
x
d
y
=
4
∫
0
π
/
2
∫
0
∞
e
−
r
2
r
2
p
+
2
q
−
2
sin
2
p
−
1
θ
cos
2
q
−
1
θ
⋅
r
d
r
d
θ
4\int_0^\infty\int_0^\infty e^{-(x^2+y^2)}x^{2p-1}y^{2q-1}dxdy=4\int_0^{\pi/2}\int_0^\infty e^{-r^2}r^{2p+2q-2}\sin^{2p-1}\theta\cos^{2q-1}\theta \cdot rdrd\theta
4∫0∞∫0∞e−(x2+y2)x2p−1y2q−1dxdy=4∫0π/2∫0∞e−r2r2p+2q−2sin2p−1θcos2q−1θ⋅rdrdθ
拆成累次积分为
∫
0
∞
e
−
r
2
r
2
(
p
+
q
−
1
)
d
(
r
2
)
⋅
2
∫
0
π
/
2
sin
2
p
−
1
θ
cos
2
q
−
1
θ
d
θ
=
Γ
(
p
+
q
)
B
(
p
,
q
)
\int_0^\infty e^{-r^2}r^{2(p+q-1)}d(r^2)\cdot2\int_0^{\pi/2}\sin^{2p-1}\theta\cos^{2q-1}\theta d\theta=\Gamma(p+q)\Beta(p,q)
∫0∞e−r2r2(p+q−1)d(r2)⋅2∫0π/2sin2p−1θcos2q−1θdθ=Γ(p+q)B(p,q)
4.习题选做练手
∫
0
π
/
2
tan
α
x
d
x
=
∫
0
π
/
2
sin
α
x
cos
−
α
x
d
x
=
∫
0
π
/
2
sin
2
⋅
1
+
α
2
−
1
x
cos
2
⋅
1
−
α
2
−
1
x
d
x
=
B
(
1
+
α
2
,
1
−
α
2
)
\begin{aligned} \int_0^{\pi/2} \tan^\alpha x dx&=\int_0^{\pi/2}\sin^\alpha x \cos^{-\alpha} x dx\\ &=\int_0^{\pi/2}\sin^{2\cdot\frac{1+\alpha}{2}-1} x \cos^{2\cdot\frac{1-\alpha}{2}-1} x dx\\ &=\Beta(\dfrac{1+\alpha}{2},\dfrac{1-\alpha}{2}) \end{aligned}
∫0π/2tanαxdx=∫0π/2sinαxcos−αxdx=∫0π/2sin2⋅21+α−1xcos2⋅21−α−1xdx=B(21+α,21−α)
同理
∫
0
π
/
2
cot
α
x
d
x
=
B
(
1
−
α
2
,
1
+
α
2
)
\int_0^{\pi/2}\cot^\alpha x dx=\Beta(\dfrac{1-\alpha}{2},\dfrac{1+\alpha}{2})
∫0π/2cotαxdx=B(21−α,21+α)