HDU_1712 ACboy needs your help(DP)

ACboy needs your help

Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4538 Accepted Submission(s): 2428

Problem Description
ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the profit?

Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.

Output
For each data set, your program should output a line which contains the number of the max profit ACboy will gain.

Sample Input
2 2
1 2
1 3
2 2
2 1
2 1
2 3
3 2 1
3 2 1
0 0

Sample Output
3
4
6
题解
这是一道典型的分组背包问题,但是在把这个问题归类之前,先试着自己找思路解决这个问题。

一共有M天要分给N门课程,给我们了矩阵数组,让我们求出最大的复习效率。我们应该明白:复习时间的不同意味着得分的不同,但是对于每门课复习时间一定是确定的,前面课程复习时间的选择会对后面产生影响。我们很容易想到可以设置dp[i][j]表示前i门课一共复习j天的最大效率。所以:dp[i][j]=max(dp[i][j],dp[i-1][x]+A[i][j - x ])(0<=x<=j);

上面的思路其实是很清晰的,写出代码也很简单。下面我们看分组背包的定义,再对分组背包有更加深刻的理解。

分组背包:
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

对照分组背包的定义,我们发现分组背包其实很好理解,分组之间互相影响,一个分组内只能选取一件,又归结为01背包问题,那么问题也就很好解决了。一维数组其实就可以。

使用一维数组的伪代码如下:
1 for 所有的组k
2 do for v V to 0
3 do for 所有的i属于组k
4 do f [v] = max{f[v],f[v-c[i]] + w[i]}
但是有两点需要注意:
1.“for v=V..0“这一层循环必须在“for 所有的i属于组k”之外。这样才能保证每一组内的物品最多只有一个会被添加到背包中。
2.类似01背包,第二层for循环一定是倒序。其实对倒序的理解一直有问题,我之前认为倒序的目的是01背包防止多次加入,但是从表达式我又认为是会改变滚动数组的值,其实两者的意思是一样的,一个是原理,一个是结果。所以这道题将分组内视为01背包就更好理解了。

二维dp代码:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <cstring>
#include <limits.h>
#define MAX_N 120
using namespace std;

//复习第i门课,已复习了j天的最大收益
int dp[MAX_N][MAX_N];
int N,M,result;
int A[MAX_N][MAX_N];
int main()
{
    while( scanf("%d%d",&N,&M) && N+M )
    {
        for( int i = 1; i <= N; i++ )
            for( int j = 1; j <= M; j++ )
                scanf("%d",&A[i][j]);
        memset(dp,0,sizeof(dp));
        result = 0;
        for( int j = 0; j <= M; j++ )
        {
            dp[1][j]=A[1][j];
            result=max(result,dp[1][j]);
        }
        for( int i = 2; i <= N; i++ )
        {
            for( int j = 0; j <= M; j++ )
            {
                for( int t = 0; t <= j; t++ )
                    dp[i][j]=max(dp[i][j],dp[i-1][t]+A[i][j-t]);
                result=max(result,dp[i][j]);
            }
        }
        printf("%d\n",result);
    }
    return 0;
}

一维DP代码:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <cstring>
#include <limits.h>
#define MAX_N 120
using namespace std;

//花费时间i所得到的最大收益
int dp[MAX_N];
int N,M,result;
int A[MAX_N][MAX_N];
int main()
{
    while( scanf("%d%d",&N,&M) && N+M )
    {
        for( int i = 1; i <= N; i++ )
            for( int j = 1; j <= M; j++ )
                scanf("%d",&A[i][j]);
        memset(dp,0,sizeof(dp));
        for( int i = 1; i <= N; i++ )
        {
            for( int j = M; j >= 0; j-- )
            {
                for( int t = 0; t <= j; t++ )
                    dp[j]=max(dp[j],dp[j-t]+A[i][t]);
            }
        }
        printf("%d\n",dp[M]);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值