优化在机器学习中扮演着重要的角色,它是为了最大化或最小化一个目标函数而对模型参数进行调整的过程。本文将介绍优化的基本概念,并提供一些常用的优化算法的源代码示例。
- 梯度下降法(Gradient Descent)
梯度下降法是一种常用且简单的优化算法。它通过计算目标函数对于参数的梯度,并以负梯度方向更新参数,从而逐步接近或达到最优解。以下是梯度下降法的代码示例:
def gradient_descent(x, y, learning_rate, num_iterations):
m = len(x