机器学习笔记 - 优化简介

103 篇文章 15 订阅 ¥59.90 ¥99.00
本文介绍了机器学习中优化的重要性,详细讲解了梯度下降法和随机梯度下降法的基本原理及代码实现,并提及牛顿法作为更高效的优化手段。这些算法用于调整模型参数,提升模型性能。
摘要由CSDN通过智能技术生成

优化在机器学习中扮演着重要的角色,它是为了最大化或最小化一个目标函数而对模型参数进行调整的过程。本文将介绍优化的基本概念,并提供一些常用的优化算法的源代码示例。

  1. 梯度下降法(Gradient Descent)
    梯度下降法是一种常用且简单的优化算法。它通过计算目标函数对于参数的梯度,并以负梯度方向更新参数,从而逐步接近或达到最优解。以下是梯度下降法的代码示例:
def gradient_descent(x, y, learning_rate, num_iterations):
    m = len(x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值