PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest
https://dl.acm.org/doi/pdf/10.1145/3394486.3403280
背景
和阿里那篇多兴趣推荐论文相似,出发点都是单一的用户embedding没法很好的表示用户的多个兴趣,所以提出了一个多模式的用户嵌入方式,使用层次化聚类的方法将用户行为历史的点击物品聚为k个类别来表示用户的兴趣。
如上图所示,用户关注的三个类别分别是绘画、鞋子和科技,但是单一的用户embedding在对上述三个物品embedding进行mean pooling操作后得到的用户embedding映射是食物,偏离了用户的真实兴趣。
PinnerSage的设计选择
物品的向量是固定的:基于推荐实时性和一致性的考量。
用户的表示向量数目不固定:为了更好的建模用户的多兴趣。
用Medoids方法表示用户聚类:不是对聚类取均值,而是根据策略选取类中的某个物品embedding表示这个类。
Medoid采样得到推荐候选集:从某个用户所有的聚类表示中选择3个最为集中的代表这个用户兴趣。
处理实时更新的两步策略:1.根据用户的长期交互历史推断用户的medoid。2.根据用户的当天点击信息得到实时的medoid。