KDD2020|PinnerSage:Pinterest推荐中的多模式用户嵌入框架

PinnerSage: Multi-Modal User Embedding Framework for Recommendations at Pinterest

https://dl.acm.org/doi/pdf/10.1145/3394486.3403280

背景

和阿里那篇多兴趣推荐论文相似,出发点都是单一的用户embedding没法很好的表示用户的多个兴趣,所以提出了一个多模式的用户嵌入方式,使用层次化聚类的方法将用户行为历史的点击物品聚为k个类别来表示用户的兴趣。

如上图所示,用户关注的三个类别分别是绘画、鞋子和科技,但是单一的用户embedding在对上述三个物品embedding进行mean pooling操作后得到的用户embedding映射是食物,偏离了用户的真实兴趣。

PinnerSage的设计选择

物品的向量是固定的:基于推荐实时性和一致性的考量。

用户的表示向量数目不固定:为了更好的建模用户的多兴趣。

用Medoids方法表示用户聚类:不是对聚类取均值,而是根据策略选取类中的某个物品embedding表示这个类。

Medoid采样得到推荐候选集:从某个用户所有的聚类表示中选择3个最为集中的代表这个用户兴趣。

处理实时更新的两步策略:1.根据用户的长期交互历史推断用户的medoid。2.根据用户的当天点击信息得到实时的medoid。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值