KDD2020|序列推荐中的解纠缠自监督学习

Disentangled Self-Supervision in Sequential Recommenders

背景

现在大多数的序列推荐都是使用seq2item的推荐,以用户的下一个行为为标签输入为用户的点击历史序列。这样带来的结果是短视的,并且没法产生多样化的推荐列表。文章中提出,使用seq2seq的训练方法,使用用户的历史序列来预测用户的未来点击序列可能是比seq2item鲁棒性更好的训练方法。但是这其中有两个问题,首先是构造多个行为的未来序列要比预测单个item要困难,并且可能无法收敛;其次是用户未来的行为可能包含多个意图,并非每个意图都可以从早期的行为中预测出来。文章后续的部分都是在说明如何解决这两个问题。

序列到序列的自监督

左边是传统的seq2item预测策略,使用用户的历史行为预测下一次点击,右边是论文中提出的seq2seq方法,使用前后相同的用户意图来自监督的学习预测用户后续的seq表示。

文中提出了一个序列编码器,可以将输入序列编码到k个D维的向量空间中,每个D维的向量表示用户的某个意图(兴趣),ps:这里感觉又有点muti-interest的味道了,看来最近业界的工作都集中在这一块,已经看到3篇用多兴趣建模用户的了。然后如果输入序列和生成的对应序列间有同样的意图,就会对其进行Loss的反向传播,这里文中将seq2seq Loss定义为:

总的损失使用了seq2seq Loss加上seq2item Loss:

解纠缠的序列编码

简单来说就是计算用户每个意图(intension)与事先定义好的意图原型之间的距离,计算用户意图属于不同事先定义意图的概率:

实验

文章做了很多实验,分别是推荐性能、seq2seq训练方法对于噪声的敏感性和消融实验。

推荐上,文中的模型对比baseline和SOAT均取得了最佳的效果。

对于噪声,文中在beauty数据集上随机替换物品的标签,产生不同比例的噪声,结果证明,使用了seq2seq的损失函数对噪声更鲁棒。

消融实验的结果证明了,使用seq2seq和对用户后续序列的数据采样方式上,文中的方法都是有效的。

结论

文章提出了seq2seq的预测场景,并对用户意图进行分析和自监督的训练,证明了seq2seq预测对比seq2item的优越性。


Ref:Ma J, Zhou C, Yang H, et al. Disentangled Self-Supervision in Sequential Recommenders[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 483-491.

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值