高数:Ch2.导数与微分

Ch2.导数与微分

在这里插入图片描述

1.导数的概念

(1)导数的定义

①一点处导数的定义

(1) f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0)=\lim\limits_{Δx→0}\dfrac{Δy}{Δx}=\lim\limits_{Δx→0}\dfrac{f(x_0+Δx)-f(x_0)}{Δx}=\lim\limits_{h→0}\dfrac{f(x_0+h)-f(x_0)}{h} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)=h0limhf(x0+h)f(x0)

(2) f ′ ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 f'(x_0)=\lim\limits_{x→x_0}\dfrac{f(x)-f(x_0)}{x-x_0} f(x0)=xx0limxx0f(x)f(x0)     【 Δ x = x − x 0 ⇨ x = x 0 + Δ x Δx=x-x_0 ⇨ x=x_0+Δx Δx=xx0x=x0+Δx

(3) f ( x ) f(x) f(x) x = 0 x=0 x=0处可导 ⇔ \Leftrightarrow lim ⁡ x → 0 f ( x ) − f ( 0 ) x \lim\limits_{x→0}\dfrac{f(x)-f(0)}{x} x0limxf(x)f(0)存在
f ( 0 ) = 0 f(0)=0 f(0)=0,则 f ( x ) f(x) f(x) x = 0 x=0 x=0处可导 ⇔ \Leftrightarrow lim ⁡ x → 0 f ( x ) x \lim\limits_{x→0}\dfrac{f(x)}{x} x0limxf(x)存在


②导函数的定义

(1) y ′ = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x y'=\lim\limits_{Δx→0}\dfrac{f(x+Δx)-f(x)}{Δx} y=Δx0limΔxf(x+Δx)f(x)

(2) f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim\limits_{h→0}\dfrac{f(x+h)-f(x)}{h} f(x)=h0limhf(x+h)f(x)


①导数是一种特殊的极限,导数是函数改变量与自变量改变量之比的极限(变化率的极限存在)。
②导数 刻画 函数在这一点的变化率。



例题1:24李林六(五)2.   导数定义 + 微分方程
在这里插入图片描述

分析:
f ′ ( x ) = lim ⁡ y → 0 f ( x + y ) − f ( x ) y = lim ⁡ y → 0 [ f ( x ) − 1 ] y + α ( y ) y = lim ⁡ y → 0 [ f ( x ) − 1 ] + 0 = f ( x ) − 1 f'(x)=\lim\limits_{y→0}\dfrac{f(x+y)-f(x)}{y}=\lim\limits_{y→0}\dfrac{[f(x)-1]y+α(y)}{y}=\lim\limits_{y→0}[f(x)-1]+0=f(x)-1 f(x)=y0limyf(x+y)f(x)=y0limy[f(x)1]y+α(y)=y0lim[f(x)1]+0=f(x)1
得微分方程: f ′ ( x ) − f ( x ) = − 1 f'(x)-f(x)=-1 f(x)f(x)=1,代入一阶微分方程通解公式得 f ( x ) = 1 + C e x f(x)=1+Ce^x f(x)=1+Cex,由 f ( 0 ) = 2 f(0)=2 f(0)=2 C = 1 C=1 C=1
∴ f ( x ) = e x + 1 , f ( 1 ) = e + 1 ∴f(x)=e^x+1,f(1)=e+1 f(x)=ex+1f(1)=e+1

答案:B


例题2:20年2.   导数定义:C f(x)为x的同阶或高阶无穷小
在这里插入图片描述

分析:

A、B:题干只说f(x)在(-1,1)内有定义,没说连续,故不可导。取可去间断点的分段函数为反例。A、B❌

C:①f(x)在x=0处可导,则在x=0连续, f ( 0 ) = lim ⁡ x → 0 f ( x ) = 0 f(0)=\lim\limits_{x→0}f(x)=0 f(0)=x0limf(x)=0
②f(x)在x=0处可导 ⇦⇨ f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 f ( x ) x f'(0)=\lim\limits_{x→0}\dfrac{f(x)-f(0)}{x-0}=\lim\limits_{x→0}\dfrac{f(x)}{x} f(0)=x0limx0f(x)f(0)=x0limxf(x)存在   ∴f(x)为x的同阶或高阶无穷小

又因为 ∣ x ∣ \sqrt{|x|} x 比x低阶   ∴ lim ⁡ x → 0 f ( x ) ∣ x ∣ = 0 \lim\limits_{x→0}\dfrac{f(x)}{\sqrt{|x|}}=0 x0limx f(x)=0。   C✔

D:当f(x)比x²低阶, f ( x ) x 2 \dfrac{f(x)}{x²} x2f(x)应该为∞,不为0;当f(x)与x²同阶, f ( x ) x 2 \dfrac{f(x)}{x²} x2f(x)应该为 k ≠ 0 k≠0 k=0;举反例,取f(x)=x。D❌

答案:C


例题3:15年18.
在这里插入图片描述




(2)左右导数

①左导数的定义:
f ′ _ ( x 0 ) = lim ⁡ Δ x → 0 − Δ y Δ x = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 f'\_(x_0)=\lim\limits_{Δx→0^-}\dfrac{Δy}{Δx}=\lim\limits_{Δx→0^-}\dfrac{f(x_0+Δx)-f(x_0)}{Δx}=\lim\limits_{x→x_0^-}\dfrac{f(x)-f(x_0)}{x-x_0} f_(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0)=xx0limxx0f(x)f(x0)

②右导数的定义:
f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + Δ y Δ x = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f'_{+}(x_0)=\lim\limits_{Δx→0^+}\dfrac{Δy}{Δx}=\lim\limits_{Δx→0^+}\dfrac{f(x_0+Δx)-f(x_0)}{Δx}=\lim\limits_{x→x_0^+}\dfrac{f(x)-f(x_0)}{x-x_0} f+(x0)=Δx0+limΔxΔy=Δx0+limΔxf(x0+Δx)f(x0)=xx0+limxx0f(x)f(x0)


(3)定理:可导与左右导数的关系

(1)可导 ⇔ \Leftrightarrow 左、右导数都存在且相等
(2)有连续一阶导数 ⇔ { ①处处可导 ② f ′ ( x ) 连续 \Leftrightarrow \left\{\begin{aligned} ①处处可导 \\ ②f'(x)连续 \end{aligned}\right. {处处可导f(x)连续
(3) f ( x ) f(x) f(x) n n n阶可导,最多出现 f ( n − 1 ) ( x ) f^{(n-1)}(x) f(n1)(x)



例题1:23李林六套卷(一) 2.   连续、极限存在、可导的定义
在这里插入图片描述

分析:
在这里插入图片描述

答案:D



(4)可导三要素

lim ⁡ f ( φ ( h ) ) Ψ ( h ) \lim \dfrac{f(φ(h))}{Ψ(h)} limΨ(h)f(φ(h))存在 【高数辅导讲义P54】

①双侧趋近: φ(h)既能趋近0+,又能趋近 0-
②同阶无穷小:φ(h)与Ψ(h)要同阶,或分子更高阶
③一动一定(固定一点)



例题1:高数辅导讲义 P53页例题2 (数一真题)
在这里插入图片描述

分析:
A.单侧趋近
B.正确
C.分母比分子高阶,极限不一定存在
D.两动点,没有固定一点
在这里插入图片描述
答案:B


例题2:
在这里插入图片描述
分析:
A、B:单侧趋近
C.没有固定一点,拆开两个极限不一定单独存在,所以不可拆。必须固定一点。

答案:D



(5)用导数定义判断可导性

含绝对值的导数

①设 f ( x ) = ∣ x − a ∣ φ ( a ) f(x)=|x-a|φ(a) f(x)=xaφ(a) φ ( x ) φ(x) φ(x) x = a x=a x=a处连续,则 f ( x ) f(x) f(x) x = a x=a x=a 处可导的充分必要条件是 φ ( a ) = 0 φ(a)=0 φ(a)=0

∣ x ∣ x n |x|x^n xxn 在x=0处n阶可导 ∣ x ∣ |x| x在x=0处不可导, x ∣ x ∣ x|x| xx在x=0处1阶可导】


②带极限号的函数的可导性

①第一步:求极限,确定f(x)表达式
②第二步,根据f(x)表达式确定可导性


3.几何方法(选填):
画图,左右切线的斜率代表左右导数。若不同,则该点处不可导。



例题1:18年1.
在这里插入图片描述

分析:
带绝对值的函数,分段(x>0,x<0)求f(x)、f’(x):
推导可知,A、C 有没有绝对值,f(x)表达式都相同,且f’(x)没有分母,一定可导
B.分段求f(x),f’(x),得 f + ′ ( 0 ) = 0 f_+'(0)=0 f+(0)=0 f − ′ ( 0 ) = 0 f_-'(0)=0 f(0)=0,则 f ′ ( 0 ) = 0 f'(0)=0 f(0)=0,f(x)在x=0处可导
D.分段求f(x),f’(x),得 f + ′ ( 0 ) = − 1 2 f_+'(0)=-\dfrac{1}{2} f+(0)=21 f − ′ ( 0 ) = 1 2 f_-'(0)=\dfrac{1}{2} f(0)=21,f(x)在x=0处不可导

答案:D


例题2:05年7.   带极限号的函数的可导性的判定
在这里插入图片描述

分析:带极限号的函数的可导性,第一步:求极限,确定f(x)表达式; 第二步,根据f(x)表达式确定可导性

几何法:
在这里插入图片描述
答案:C


例题3:660 T151
在这里插入图片描述

分析:
在这里插入图片描述

答案:C


例题4:660 T152
在这里插入图片描述

分析:
法一:二级结论: ∣ x ∣ x n |x|x^n xxn 在x=0处n阶可导
法二:导数定义
在这里插入图片描述

答案:C




(6)导数定义的综合题



例题1:24李林六(六)11.   极限、导数定义、切线方程
在这里插入图片描述

分析:
-x+x

在这里插入图片描述


三种方法求 f ( 0 ) = − 1 f(0)=-1 f(0)=1,但只有法二 -x+x 能求出 f ′ ( 0 ) f'(0) f(0)
在这里插入图片描述



例题2:24李林六(一) 2.   极限、导数定义、极值的综合
在这里插入图片描述

分析:
导数定义: f ′ ( x 0 ) = lim ⁡ h → 0 f ( x 0 + h ) − f ( x 0 ) h f'(x_0)=\lim\limits_{h→0}\dfrac{f(x_0+h)-f(x_0)}{h} f(x0)=h0limhf(x0+h)f(x0)

x 0 = 1 x_0=1 x0=1,则 f ′ ( 1 ) = lim ⁡ h → 0 f ( 1 + h ) − f ( 1 ) h = lim ⁡ h → 0 f ( 1 + h ) h = lim ⁡ x → 0 f ( x + 1 ) x f'(1)=\lim\limits_{h→0}\dfrac{f(1+h)-f(1)}{h}=\lim\limits_{h→0}\dfrac{f(1+h)}{h}=\lim\limits_{x→0}\dfrac{f(x+1)}{x} f(1)=h0limhf(1+h)f(1)=h0limhf(1+h)=x0limxf(x+1)

在这里插入图片描述

答案:B




2.微分的概念

(1)微分的定义

Δ y = f ( x 0 + Δ x ) − f ( x 0 ) Δy=f(x_0+Δx)-f(x_0) Δy=f(x0+Δx)f(x0) 可以表示为 Δ y = A Δ x + o ( Δ x ) ( Δ x → 0 ) Δy=AΔx+o(Δx) \quad (Δx→0) Δy=AΔx+o(Δx)(Δx0),则称函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处可微,称 A Δ x AΔx AΔx为函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处相应于自变量增量 Δ x Δx Δx的微分,记为 d y = A Δ x dy=AΔx dy=AΔx

微分是函数在这一点 改变量/变化量(增量) 的近似值,是函数改变量的线性主部 (忽略o(Δx))。


(2)微分与可导的关系

函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0处可微的充分必要条件是 f ( x ) f(x) f(x) x 0 x_0 x0处可导,且有 d y = f ′ ( x 0 ) Δ x = f ′ ( x 0 ) d x dy=f'(x_0)Δx=f'(x_0){\rm d}x dy=f(x0)Δx=f(x0)dx



例题1:06年   导数与微分
在这里插入图片描述

分析:
法一:几何法

法二:两次拉格朗日中值定理
在这里插入图片描述

答案:A




3.导数与微分的几何意义

(1)导数 f ′ ( x 0 ) f'(x_0) f(x0)的几何意义:切线的斜率、相关变化率

平面曲线可以用3种方法表示:①直角坐标 ②参数方程 ③极坐标:根据 { x = ρ c o s θ y = ρ s i n θ \left\{\begin{aligned} x & = ρcosθ \\ y & = ρsinθ \end{aligned}\right. {xy=ρcosθ=ρsinθ 把x、y表示成θ的参数方程

①切线的斜率: f ′ ( x 0 ) = d y d x = tan ⁡ α = k 切线 f'(x_0)=\dfrac{dy}{dx}=\tanα=k_{切线} f(x0)=dxdy=tanα=k切线

②法线的斜率 = − 1 切线斜率 -\dfrac{1}{切线斜率} 切线斜率1

③相切 ⇔ { Ⅰ . 函数值相等 Ⅱ . 导数值相等 \Leftrightarrow \left\{\begin{aligned} Ⅰ.函数值相等 \\ Ⅱ.导数值相等 \end{aligned}\right. {Ⅰ.函数值相等Ⅱ.导数值相等

④相关变化率:
知道一个变化率,求另一个相关的变量的变化率:和求参数方程的导数类似
在这里插入图片描述



例题1:  ③极坐标
在这里插入图片描述



(2)微分的几何意义:切线的增量

①微分 d y = f ′ ( x 0 ) d x dy=f'(x_0)dx dy=f(x0)dx在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)切线上的增量
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) Δy=f(x_0+Δx)-f(x_0) Δy=f(x0+Δx)f(x0)在几何上表示曲线 y = f ( x ) y=f(x) y=f(x)的增量 Δ y ≈ d y Δy≈dy Δydy

Δx:自变量的增量
Δy:函数的增量,曲线y(x)的增量
dy:函数的微分,切线的增量

在这里插入图片描述



例题1:06年7.   微分的几何意义
在这里插入图片描述

分析:
法1:画图法
Δ x Δx Δx是自变量的增量, Δ y Δy Δy是函数曲线的增量, d y dy dy是切线的增量。在 f ′ ( x ) > 0 f'(x)>0 f(x)>0 f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0 的情况下,画图明显可知:0<切线的增量<曲线的增量,即 0<dy<Δy。

法2:拉格朗日中值定理
在这里插入图片描述
答案:A




4.连续、可导、可微之间的关系

在这里插入图片描述



5.导数公式

在这里插入图片描述

(5) ( log ⁡ a x ) ′ = 1 x ln ⁡ a (\log_ax)'=\dfrac{1}{x\ln a} (logax)=xlna1

(6) ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln|x|)'=\dfrac{1}{x} (lnx)=x1

(9) ( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)'=\sec ^2x (tanx)=sec2x

(11) ( sec ⁡ x ) ′ = sec ⁡ x tan ⁡ x (\sec x)'=\sec x\tan x (secx)=secxtanx

(14) ( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)'=-\dfrac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1



6.求导法则

求导: + + + − - × × × ÷ ÷ ÷、复合

(0)结论:奇偶性、周期性、分段函数分段点

1.奇偶函数可导的性质
①f是奇函数,则 f ′ f' f为偶函数;f是偶函数,则 f ′ f' f为奇函数 【奇函数的导数为偶函数,偶函数的导数为奇函数】
②奇函数在x=0点处的偶次阶导数均为0,即: f ( x ) f(x) f(x)为奇函数 ⇔ \Leftrightarrow f ( 2 n ) ( 0 ) = 0 f^{(2n)}(0)=0 f(2n)(0)=0
偶函数在x=0点处的奇次阶导数均为0,即: f ( x ) f(x) f(x)为偶函数 ⇔ \Leftrightarrow f ( 2 n + 1 ) ( 0 ) = 0 f^{(2n+1)}(0)=0 f(2n+1)(0)=0

2.周期函数可导的性质:
f ( x ) f(x) f(x)是可导的以T为周期的周期函数,则 f ′ ( x ) f'(x) f(x)也是以T为周期的周期函数

3.分段函数在分段点的导数:用导数定义



例题1:17年9.
在这里插入图片描述

分析:奇偶性
f(x)是偶函数,则 f ′ ′ ′ ( x ) f'''(x) f′′′(x)为奇函数,则 f ′ ′ ′ ( 0 ) = 0 f'''(0)=0 f′′′(0)=0

答案:0


例题2:
在这里插入图片描述

答案:周期性+奇偶性
①周期性:f(x)是可导的以2π为周期的周期函数,则 f ′ ′ ′ ( x ) f'''(x) f′′′(x)也是以2π为周期的周期函数,则 f ′ ′ ′ ( 2 π ) = f ′ ′ ′ ( 0 ) f'''(2π)=f'''(0) f′′′(2π)=f′′′(0)
②奇偶性:可验证, f ( x ) f(x) f(x)为偶函数,则 f ′ ′ ′ ( x ) f'''(x) f′′′(x)为奇函数。由奇函数的性质,可得 f ′ ′ ′ ( 0 ) = 0 f'''(0)=0 f′′′(0)=0



(1)有理运算法则

①和、差的导数:
②乘法导数:
③除法导数:

在这里插入图片描述


(2)复合函数求导:链式求导法则 (链导法)

u = g ( x ) u=g(x) u=g(x) x x x处可导, y = f ( u ) y=f(u) y=f(u)相应点处可导【 g ′ ( x 0 ) g'(x_0) g(x0)存在, f ′ [ g ( x 0 ) ] f'[g(x_0)] f[g(x0)]存在】,则复合函数 y = f ( g ( x ) ) y=f(g(x)) y=f(g(x)) x x x处可导,且
d y d x = d y d u ⋅ d u d x = f ′ ( u ) g ′ ( x ) \dfrac{dy}{dx}=\dfrac{dy}{du}·\dfrac{du}{dx}=f'(u)g'(x) dxdy=dudydxdu=f(u)g(x)

由(1)、(2)可解决初等函数的导数 (和差积商、复合)



例题1:24李林六(一)11.
在这里插入图片描述

分析:
在这里插入图片描述

答案: 3 8 + 1 4 ln ⁡ 2 \dfrac{3}{8}+\dfrac{1}{4}\ln2 83+41ln2


例题2:23李林四(三)11.
在这里插入图片描述

分析:
在这里插入图片描述
答案: 3 8 + 1 4 ln ⁡ 2 \dfrac{3}{8}+\dfrac{1}{4}\ln2 83+41ln2



(3)隐函数求导法

y ′ ′ ( 0 ) y''(0) y′′(0)
①令x=0,得y(0)
②两边求导,代入x=0、y(0),得 y ′ ( 0 ) y'(0) y(0)
③再两边求导,代入x=0、y(0)、 y ′ ( 0 ) y'(0) y(0),得 y ′ ′ ( 0 ) y''(0) y′′(0)


1.概念:
y = y ( x ) y=y(x) y=y(x)是由方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 确定,无法明确求出 y = y ( x ) y=y(x) y=y(x)的具体表达式,称 y ( x ) y(x) y(x)为隐函数。


2.方法:
①等式两边求导:隐函数求导:直接两边求导后,直接代入。不必化简为y’ = 多少
②隐函数求导公式: d y d x = − F x ′ F y ′ \dfrac{dy}{dx}=-\dfrac{F'_x}{F'_y} dxdy=FyFx


(4)参数方程求导法

一阶: d y d x = d y d t d x d t \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}} dxdy=dtdxdtdy
二阶: d 2 y d x 2 = d ( d y d x ) d x = d ( d y d x ) d t d x d t = y ′ ′ ( t ) x ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) x ′ 3 ( t ) \dfrac{d^2y}{dx^2}=\dfrac{d(\dfrac{dy}{dx})}{dx}=\dfrac{\dfrac{d(\dfrac{dy}{dx})}{dt}}{\dfrac{dx}{dt}}=\dfrac{y''(t)x'(t)-x''(t)y'(t)}{x'^3(t)} dx2d2y=dxd(dxdy)=dtdxdtd(dxdy)=x′3(t)y′′(t)x(t)x′′(t)y(t)


在这里插入图片描述



例题1:10年9.
在这里插入图片描述

分析:
法一:链式求导
在这里插入图片描述

法二:公式法: d 2 y d x 2 = y ′ ′ ( t ) x ′ ( t ) − x ′ ′ ( t ) y ′ ( t ) x ′ 3 ( t ) \dfrac{d^2y}{dx^2}=\dfrac{y''(t)x'(t)-x''(t)y'(t)}{x'^3(t)} dx2d2y=x′3(t)y′′(t)x(t)x′′(t)y(t)

答案:0


例题2:23李林六套卷(六)12.   参数方程 + 导数定义
在这里插入图片描述
分析:
在这里插入图片描述

答案:4



(5)反函数的导数

一阶反函数的导数: φ ′ ( y ) = 1 f ′ ( x ) φ'(y)=\dfrac{1}{f'(x)} φ(y)=f(x)1

二阶反函数的导数: φ ′ ′ ( y ) = − f ′ ′ ( x ) f ′ 3 ( x ) φ''(y)=-\dfrac{f''(x)}{f'^3(x)} φ′′(y)=f′3(x)f′′(x)     【注意:求φ’'(1),是y=1,此时x等于多少还需要代入原式求x的值】

推导:
d x d y = 1 d y d x = 1 y ′ \dfrac{dx}{dy}=\dfrac{1}{\dfrac{dy}{dx}}=\dfrac{1}{y'} dydx=dxdy1=y1


d 2 x d y 2 = d ( d x d y ) d y = d ( d x d y ) d x d x d y = − y ′ ′ ( y ′ ) 2 1 y ′ = − y ′ ′ ( y ′ ) 3 \dfrac{d^2x}{dy^2}=\dfrac{d(\dfrac{dx}{dy})}{dy}=\dfrac{d(\dfrac{dx}{dy})}{dx}\dfrac{dx}{dy}=-\dfrac{y''}{(y')^2}\dfrac{1}{y'}=-\dfrac{y''}{(y')^3} dy2d2x=dyd(dydx)=dxd(dydx)dydx=(y)2y′′y1=(y)3y′′

在这里插入图片描述


(6)对数求导法

由于和差的导数比乘除的导数运算简单,因此取对数,利用对数的运算法则,可将乘除的导数变为和差的导数。例如表达式:多个因式的乘除、乘幂、幂指函数的形式【连乘、连除、乘方、开方】


(7)高阶导数

(1)4个常用的高阶导数公式
( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) (\sin x)^{(n)}=\sin(x+\dfrac{nπ}{2}) (sinx)(n)=sin(x+2)

( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) (\cos x)^{(n)}=\cos(x+\dfrac{nπ}{2}) (cosx)(n)=cos(x+2)

( u ± v ) ( n ) = u ( n ) ± v ( n ) (u±v)^{(n)}=u^{(n)}±v^{(n)} (u±v)(n)=u(n)±v(n)

( u v ) ( n ) = ∑ k = 0 n C n k u ( k ) v ( n − k ) (uv)^{(n)}=\sum\limits_{k=0}^n{\rm C}_n^ku^{(k)}v^{(n-k)} (uv)(n)=k=0nCnku(k)v(nk)   【乘法的n阶导数公式:莱布尼茨公式】

1 1 + x 、 ln ⁡ ( 1 + x ) \dfrac{1}{1+x}、\ln(1+x) 1+x1ln(1+x)的n阶导数,没必要背,求1阶、2阶,归纳n阶导数规律 即可


(2)求1阶,2阶导数归纳n阶导数的规律

例如: ( 1 x + a ) ( n ) = ( − 1 ) n n ! ( x + a ) n + 1 (\dfrac{1}{x+a})^{(n)}=(-1)^n\dfrac{n!}{(x+a)^{n+1}} (x+a1)(n)=(1)n(x+a)n+1n!,这种公式没必要背,现推很快的。


(3)泰勒公式: f ( n ) ( x 0 ) = a n ⋅ n ! f^{(n)}(x_0)=a_n·n! f(n)(x0)=ann!
f ( x ) = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + a 3 ( x − x 0 ) 3 + . . . + a n ( x − x 0 ) n + o ( ( x − x 0 ) n ) ( x → x 0 ) f(x)=a₀+a₁(x-x₀)+a₂(x-x₀)²+a₃(x-x₀)³+...+a_n(x-x₀)^n+o((x-x₀)^n) (x→x₀) f(x)=a0+a1(xx0)+a2(xx0)2+a3(xx0)3+...+an(xx0)n+o((xx0)n)(xx0)

总结:
(1)n阶导数公式、(2)求1阶2阶导数归纳规律:用于求n阶导函数 f ( n ) ( x ) f^{(n)}(x) f(n)(x)
(3)泰勒公式:用于求具体点 x 0 x_0 x0的n阶导数 f ( n ) ( x 0 ) f^{(n)}(x_0) f(n)(x0)



例题1:16年12.   泰勒公式
在这里插入图片描述
分析:
在这里插入图片描述
答案: 1 2 \dfrac{1}{2} 21


例题2:
在这里插入图片描述

分析:
法一:求一阶、二阶、三阶导数,归纳规律
法二:泰勒公式 f ( n ) ( 0 ) = a n ⋅ n ! f^{(n)}(0)=a_n·n! f(n)(0)=ann!
在这里插入图片描述
答案: ( − 1 ) n ⋅ 2 n ⋅ n ! 3 n + 1 \dfrac{(-1)^n·2^n·n!}{3^{n+1}} 3n+1(1)n2nn!


例题3:880 多元 综合填空3
在这里插入图片描述


例题4:武钟祥每日一题 24-Day60  啊,我“拆”开了!
在这里插入图片描述

分析:


  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱德华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值