高数(下) Ch10.重积分

Ch10. 重积分

(一) 二重积分

1.二重积分的概念

(1)二重积分的定义

∬ D f ( x , y ) d σ = lim ⁡ λ → 0 ∑ i = 1 n f ( x i , y i ) Δ σ i \iint\limits_Df(x,y)dσ=\lim\limits_{λ→0}\sum\limits_{i=1}^nf(x_i,y_i)Δσ_i Df(x,y)dσ=λ0limi=1nf(xi,yi)Δσi

f ( x , y ) ≡ 1 , ∬ D 1 d σ = S f(x,y)≡1,\iint\limits_D1dσ=S f(x,y)1D1dσ=S



例题1:10年4.   利用二重积分的定义求极限
在这里插入图片描述

分析:
lim ⁡ n → ∞ ∑ i = 1 n ∑ j = 1 n n ( n + i ) ( n 2 + j 2 ) = lim ⁡ n → ∞ 1 n 2 ∑ i = 1 n ∑ j = 1 n 1 ( 1 + i n ) [ 1 + ( j n ) 2 ] = ∫ 0 1 d x ∫ 0 1 1 ( 1 + x ) ( 1 + y 2 ) d y \lim\limits_{n→∞}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\dfrac{n}{(n+i)(n^2+j^2)}=\lim\limits_{n→∞}\dfrac{1}{n^2}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\dfrac{1}{(1+\dfrac{i}{n})[1+(\dfrac{j}{n})^2]}=\int_0^1dx\int_0^1\dfrac{1}{(1+x)(1+y^2)}dy nlimi=1nj=1n(n+i)(n2+j2)n=nlimn21i=1nj=1n(1+ni)[1+(nj)2]1=01dx01(1+x)(1+y2)1dy

答案:D



(2)二重积分的几何意义

曲顶柱体的体积

在这里插入图片描述


2.二重积分的性质

(1)不等式性质

①保号性:若 f ( x , y ) ≤ g ( x , y ) f(x,y)≤g(x,y) f(x,y)g(x,y),则 ∬ D f ( x , y ) d x d y ≤ ∬ D g ( x , y ) d x d y \iint\limits_D f(x,y)dxdy≤\iint\limits_D g(x,y)dxdy Df(x,y)dxdyDg(x,y)dxdy

②保号性推论: ∣ ∬ D f ( x , y ) d x d y ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d x d y |\iint\limits_D f(x,y)dxdy|≤\iint\limits_D |f(x,y)|dxdy Df(x,y)dxdyDf(x,y)dxdy   【积分的绝对值≤绝对值的积分】

③估值定理: m σ ≤ ∬ D f ( x , y ) d x d y ≤ M σ mσ≤\iint\limits_D f(x,y)dxdy≤Mσ Df(x,y)dxdyMσ

(2)二重积分的积分中值定理

∬ D f ( x , y ) d σ = f ( ξ , n ) ⋅ S \iint\limits_Df(x,y)dσ=f(ξ,n)·S Df(x,y)dσ=f(ξ,n)S

在这里插入图片描述

定积分中值定理:某段上的定积分的值 = 该段上的某一点函数值 × 线段长度
二重积分中值定理:某个平面域内二重积分的值 = 该平面域内某一点的函数值 × 平面域的面积



例题1:   保号性
在这里插入图片描述

分析:
在这里插入图片描述
答案:B


例题2:  保号性
在这里插入图片描述

分析:在这里插入图片描述
答案:A


例题3:09年2.   二重积分的奇偶对称性、保号性
在这里插入图片描述

分析:
①奇偶对称性:D2、D4关于x轴对称,ycos是y的奇函数,I2=I4=0
②保号性:ycosx在D1内为正,在D3内为负,∴I1>0,I3<0

答案:A




3.二重积分的计算

重积分化为累次积分:二重积分化为两次定积分


(1)直角坐标

(1)X型区域:先y后x
∬ D f ( x , y ) d σ = ∫ a b d x ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y \iint\limits_Df(x,y)dσ=\int_a^bdx\int_{y_1(x)}^{y_2(x)}f(x,y)dy Df(x,y)dσ=abdxy1(x)y2(x)f(x,y)dy

在这里插入图片描述

(2)Y型区域:先x后y
∬ D f ( x , y ) d σ = ∫ c d d y ∫ x 1 ( y ) x 2 ( y ) f ( x , y ) d x \iint\limits_Df(x,y)dσ=\int_c^ddy\int_{x_1(y)}^{x_2(y)}f(x,y)dx Df(x,y)dσ=cddyx1(y)x2(y)f(x,y)dx
在这里插入图片描述

(2)极坐标

1.极坐标:先ρ后θ
∬ D f ( x , y ) d σ = ∫ α β d θ ∫ ρ 1 ( θ ) ρ 2 ( θ ) f ( ρ c o s θ , ρ s i n θ ) ρ d ρ \iint\limits_Df(x,y)dσ=\int_α^βdθ\int_{ρ_1(θ)}^{ρ_2(θ)}f(ρcosθ,ρsinθ)ρdρ Df(x,y)dσ=αβdθρ1(θ)ρ2(θ)f(ρcosθ,ρsinθ)ρdρ


2.直角坐标与极坐标的转换:
{ x = ρ cos ⁡ θ y = ρ sin ⁡ θ d x d y = ρ d ρ d θ \left\{\begin{aligned} x & = ρ\cosθ\\ y & = ρ\sinθ \\ {\rm d}x{\rm d}y & = ρ{\rm d}ρ{\rm d}θ \end{aligned}\right. xydxdy=ρcosθ=ρsinθ=ρdρdθ


3.适合极坐标的二重积分:
(1)函数:f(ρ)、f(θ)
(2)积分区域:圆域、圆环域、圆心在x轴或y轴上的偏心圆、圆心不在原点或坐标轴上的偏心圆(平移+极坐标)

①函数、积分域都满足:用极坐标
②函数、积分域都不满足:使用直角坐标
一个满足一个不满足,则以函数为主。函数满足,积分域不满足,还是用极坐标。

在这里插入图片描述


4.圆心既不在原点,也不在坐标轴上时:平移 + 极坐标
{ x − x 0 = ρ cos ⁡ θ y − y 0 = ρ sin ⁡ θ \left\{\begin{aligned} x-x_0 & = ρ\cosθ\\ y-y_0 & = ρ\sinθ \end{aligned}\right. {xx0yy0=ρcosθ=ρsinθ

在这里插入图片描述


5.广义极坐标 (D为椭圆域)
x 2 a 2 + y 2 b 2 = 1 \dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1 a2x2+b2y2=1

u = x a , v = y b u=\dfrac{x}{a},v=\dfrac{y}{b} u=ax,v=by,则上述椭圆域可化为 圆域: u 2 + v 2 = 1 u^2+v^2=1 u2+v2=1



例题1:880 P35 二T7   椭圆域

答案:
在这里插入图片描述



(3)对称性
奇偶对称性:关于坐标轴对称

1.奇偶对称性(偶倍奇零):
①积分区域D关于y轴对称,f是x的奇函数则二重积分为0,f是x的偶函数则是正半区域的2倍
②积分区域D关于x轴对称,f是y的奇函数则二重积分为0,f是y的偶函数则是正半区域的2倍


轮换对称性:关于 y = x y=x y=x 对称

2.轮换对称性(变量对称性):
①若D关于y=x对称,则 ∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint\limits_Df(x,y)dσ=\iint\limits_Df(y,x)dσ Df(x,y)dσ=Df(y,x)dσ
②若D1为x,y互换的积分区域,则 ∬ D f ( x , y ) d σ = ∬ D 1 f ( y , x ) d σ \iint\limits_Df(x,y)dσ=\iint\limits_{D_1}f(y,x)dσ Df(x,y)dσ=D1f(y,x)dσ 【积分区域和被积函数都交换】


变量对称性(轮换对称性)的原理:一元积分中的定积分与积分变量无关,在多元积分中的体现。
二重积分的轮换对称性:将所有y和x对调,积分值不变。
特别的,当积分域D关于y=x对称时,① ∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint_Df(x,y)dσ=\iint_Df(y,x)dσ Df(x,y)dσ=Df(y,x)dσ、② ∬ D f ( x ) d σ = ∬ D f ( y ) d σ \iint_Df(x)dσ=\iint_Df(y)dσ Df(x)dσ=Df(y)dσ
在这里插入图片描述



例题1:
在这里插入图片描述

分析:奇偶对称性、轮换对称性、极坐标
在这里插入图片描述


例题2:
在这里插入图片描述
分析:D2区域积分不好求,代换为 D 2 = D − D 1 D_2=D-D_1 D2=DD1
答案: π 4 − 1 3 \dfrac{π}{4}-\dfrac{1}{3} 4π31


例题3:
在这里插入图片描述
分析:观察D是否关于y=x对称,再看被积函数,考虑轮换对称性,简化计算
答案: − 3 4 -\dfrac{3}{4} 43


例题4:660 T263   轮换对称性的推广
在这里插入图片描述
分析:
在这里插入图片描述

答案:D



<br

(4)交接积分次序:画域、重新定限(二重积分化二次积分)
①直角坐标 交换积分次序

画域:画出二重积分区域D
重新定限:将X型区域变成Y型,或将Y型区域变为X型。



例题1:01年3.
在这里插入图片描述

分析: − ∫ − 1 0 d y ∫ 2 1 − y f ( x , y ) d x -\int_{-1}^0dy\int_2^{1-y}f(x,y)dx 10dy21yf(x,y)dx,注意dx的积分限故意写反了!要先提个负号出来!


答案: − ∫ 1 2 d x ∫ 1 − x 0 f ( x , y ) d y -\int_1^2dx\int_{1-x}^0f(x,y)dy 12dx1x0f(x,y)dy


例题2:  极坐标化直角坐标
在这里插入图片描述

分析:ρ=cosθ,则ρ²=ρcosθ,即x²+y²=x,偏心圆

答案:D


例3:  直角坐标化极坐标
在这里插入图片描述

答案:
在这里插入图片描述


例题4:06年8.   二重积分:极坐标与直角坐标的转换
在这里插入图片描述

分析:①画域 ②重新定限

在这里插入图片描述

答案:C



②极坐标 交换积分次序

法一:先θ后r:r=c,是绕坐标原点的一组圆弧。

在这里插入图片描述


法二:把ρ,θ当作y,x,重新画直角坐标下的曲线。



例题1:660 T109

例题2:880 P35 二、T6




(二) 三重积分

1.三重积分的概念

1.三重积分的定义
在这里插入图片描述

2.三重积分的几何意义
质量


2.三重积分的性质

与二重积分对应
①不等式性质
②积分中值定理


3.三重积分的计算

(1)直角坐标
①先一后二(先单后重) / 投影法

∭ Ω f ( x , y , z ) d v = ∬ D x y d x d y ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z \iiint\limits_Ωf(x,y,z){\rm d}v=\iint\limits_{D_{xy}}{\rm d}x{\rm d}y\int_{z_1(x,y)}^{z_2(x,y)}f(x,y,z){\rm d}z Ωf(x,y,z)dv=Dxydxdyz1(x,y)z2(x,y)f(x,y,z)dz
在这里插入图片描述



例题1:23年19.   三重积分的计算:投影法
在这里插入图片描述

分析:
①高斯公式
②三重积分的计算:投影法
③对称性:奇偶对称性、轮换对称性



例题2:05年4.
在这里插入图片描述

分析:
解法1:球面坐标(计算量少)

解法2:(三重积分)投影法

答案: ( 2 − 2 ) π R 3 (2-\sqrt{2})πR³ (22 )πR3




先二后一 / 截面法

∭ Ω f ( x , y , z ) d v = ∫ z 1 z 2 d z ∬ D z f ( x , y , z ) d x d y \iiint\limits_Ωf(x,y,z){\rm d}v=\int_{z_1}^{z_2}dz\iint\limits_{D_z}f(x,y,z){\rm d}x{\rm d}y Ωf(x,y,z)dv=z1z2dzDzf(x,y,z)dxdy

对于f里只含z的三重积分,建议使用截面法: ∭ Ω f ( z ) d v = ∫ z 1 z 2 f ( z ) d z ∬ D z d x d y = ∫ z 1 z 2 f ( z ) ⋅ D z d z \iiint\limits_Ωf(z){\rm d}v=\int_{z_1}^{z_2}f(z)dz\iint\limits_{D_z}{\rm d}x{\rm d}y=\int_{z_1}^{z_2}f(z)·D_zdz Ωf(z)dv=z1z2f(z)dzDzdxdy=z1z2f(z)Dzdz

在这里插入图片描述



例题1:10年12. 三维形心坐标


例题2:18年17.   第二类曲面积分 → 高斯公式 三重积分 → 截面法 二重积分 → 极坐标 定积分 第二类曲面积分\xrightarrow{高斯公式} 三重积分\xrightarrow[]{截面法}二重积分\xrightarrow[]{极坐标}定积分 第二类曲面积分高斯公式 三重积分截面法 二重积分极坐标 定积分
在这里插入图片描述

分析:补面+高斯公式 + 截面法 + 极坐标
∭ Ω ( y 2 + z 2 ) d v = 截面法 ∫ 0 1 d x ∬ D x ( y 2 + z 2 ) d y d z = 极坐标 ∫ 0 1 d x ∫ 0 2 π d θ ∫ 0 1 − x 2 3 ρ 2 ⋅ ρ d ρ \iiint\limits_Ω(y^2+z^2)dv\xlongequal{截面法}\int_0^1dx\iint\limits_{D_x}(y^2+z^2)dydz\xlongequal{极坐标}\int_0^1dx\int_0^{2π}dθ\int_0^{\sqrt{\frac{1-x^2}{3}}}ρ^2·ρdρ Ω(y2+z2)dv截面法 01dxDx(y2+z2)dydz极坐标 01dx02πdθ031x2 ρ2ρdρ


答案:




(2)柱坐标 (类似二重的极坐标)

1.柱坐标典型应用,旋转体:【因为旋转出来一定是圆,适合极坐标,加上z轴为柱坐标】
适合柱坐标的情况:
(1)被积函数为 F ( x , y , z ) = φ ( z ) f ( x 2 + y 2 ) F(x,y,z)=φ(z)f(\sqrt{x^2+y^2}) F(x,y,z)=φ(z)f(x2+y2 )
(2)空间区域为:
圆柱
圆锥(锥顶为平面)
旋转抛物面

2.柱坐标本质:先直角坐标,再极坐标

3. d v = ρ d ρ d θ d z dv=ρdρdθdz dv=ρdρdθdz

在这里插入图片描述



例题1:10年12题的中间步骤

先一后二,柱面坐标
在这里插入图片描述




(3)球面坐标

d v = d x d y d z = r 2 sin ⁡ φ d r d φ d θ ∭ Ω f ( x , y , z ) = ∭ Ω F ( r , φ , θ ) r 2 sin ⁡ φ d r d φ d θ = ∫ α β d θ ∫ α ′ β ‘ sin ⁡ φ d φ ∫ r 1 r 2 F ( r , φ , θ ) r 2 d r {\rm d}v={\rm d}x{\rm d}y{\rm d}z=r²\sinφ{\rm d}r{\rm d}φ{\rm d}θ\\[3mm] \iiint\limits_Ωf(x,y,z)=\iiint\limits_ΩF(r,φ,θ)r²\sinφ{\rm d}r{\rm d}φ{\rm d}θ=\int_α^β{\rm d}θ\int_{α'}^{β‘}\sinφ{\rm d}φ\int_{r_1}^{r_2}F(r,φ,θ)r²{\rm d}r dv=dxdydz=r2sinφdrdφdθΩf(x,y,z)=ΩF(r,φ,θ)r2sinφdrdφdθ=αβdθαβsinφdφr1r2F(r,φ,θ)r2dr

适合的空间区域:
球体
冰淇淋圆锥(锥顶为球面)


在这里插入图片描述



例题1:09年12.
在这里插入图片描述
分析:
解1:轮换对称性 + 球坐标

解2: ∭ f ( z ) d v \iiint f(z)dv f(z)dv,用截面法:根据勾股定理, r 2 = R 2 − z 2 = 1 − z 2 ∴ D z = π r 2 = π ( 1 − z 2 ) r^2=R^2-z^2=1-z^2 ∴D_z=πr^2=π(1-z^2) r2=R2z2=1z2Dz=πr2=π(1z2)

答案: 4 15 π \dfrac{4}{15}π 154π


例题2:05年4.
在这里插入图片描述

分析:

答案: ( 2 − 2 ) π R 3 (2-\sqrt{2})πR³ (22 )πR3


例题3:24李林四(一)17.   球面坐标
在这里插入图片描述

答案:
在这里插入图片描述




(4)对称性
关于坐标面的对称性(偶倍奇零)

关于某坐标轴对称,或关于某坐标平面对称,奇函数积分为0.

在这里插入图片描述



例题1:07年18.   椭圆域:也可以偶倍奇零。看到奇函数就要考虑是否有对称性可以直接得0
在这里插入图片描述

分析:
在求 − ∬ D x y 3 x y   d x d y -\iint\limits_{D_{xy}}3xy\ {\rm d}x{\rm d}y Dxy3xy dxdy 时,虽然是椭圆域。但考虑到椭圆域和圆域一样也有关于x轴、y轴对称的积分偶倍奇零的性质,因此3xy关于x轴、y轴均为奇函数,该积分直接得0

在这里插入图片描述

答案: π − 0 = π π-0=π π0=π



轮换对称性

轮换对称性:若积分区域Ω 轮换x、y、z(使y代替x,z代替y,x代替z),函数不变,则三者地位相等,可以互相代替

在这里插入图片描述



例题1:15年12.  求三重积分:轮换对称性 + 截面法
在这里插入图片描述

分析:在这里插入图片描述

答案: 1 4 \dfrac{1}{4} 41


例题2:18年12.  轮换对称性
在这里插入图片描述

分析:轮换对称性、可代入、三和平方公式
在这里插入图片描述

答案: − π 3 -\dfrac{π}{3} 3π

在这里插入图片描述
本题在2018年时的难度系数为0.026,低的惊人,只有2.6%的人做对了。可见轮换对称性的杀伤力。


例题3:07年14.  关于坐标面的对称性、轮换对称性

在这里插入图片描述

分析: ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 |x|+|y|+|z|=1 x+y+z=1 是正八面体

考虑曲面Σ关于yOz平面对称,则关于x的奇函数的曲面积分为0,即 ∯ Σ x   d S = 0 \oiint\limits_Σx\ {\rm d}S=0 Σ x dS=0
∯ Σ ( x + ∣ y ∣ )   d S = ∯ Σ ∣ y ∣   d S = 轮换对称性 1 3 ∯ Σ ( ∣ x ∣ + ∣ y ∣ + ∣ z ∣ )   d S = 1 3 ∯ Σ d S \oiint\limits_Σ(x+|y|)\ {\rm d}S=\oiint\limits_Σ|y|\ {\rm d}S\xlongequal{轮换对称性}\dfrac{1}{3}\oiint\limits_Σ(|x|+|y|+|z|)\ {\rm d}S=\dfrac{1}{3}\oiint\limits_Σ{\rm d}S Σ (x+y) dS=Σ y dS轮换对称性 31Σ (x+y+z) dS=31Σ dS

观察该正八面体 ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 |x|+|y|+|z|=1 x+y+z=1,其在第一卦限上的表面积为一个正三角形,边长为 2 \sqrt{2} 2 ,则正三角形的面积为 3 4 a 2 = 3 4 × 2 = 3 2 \dfrac{\sqrt{3}}{4}a²=\dfrac{\sqrt{3}}{4}×2=\dfrac{\sqrt{3}}{2} 43 a2=43 ×2=23

1 3 ∯ Σ d S = 1 3 × 8 × 3 2 = 4 3 3 \dfrac{1}{3}\oiint\limits_Σ{\rm d}S=\dfrac{1}{3}×8×\dfrac{\sqrt{3}}{2}=\dfrac{4\sqrt{3}}{3} 31Σ dS=31×8×23 =343

答案: 4 3 3 \dfrac{4\sqrt{3}}{3} 343



(5)当 f(x,y,z)=1时, ∭ Ω d v = V \iiint\limits_Ω{\rm d}v=V Ωdv=V
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱德华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值