Ch10. 重积分
(一) 二重积分
1.二重积分的概念
(1)二重积分的定义
∬ D f ( x , y ) d σ = lim λ → 0 ∑ i = 1 n f ( x i , y i ) Δ σ i \iint\limits_Df(x,y)dσ=\lim\limits_{λ→0}\sum\limits_{i=1}^nf(x_i,y_i)Δσ_i D∬f(x,y)dσ=λ→0limi=1∑nf(xi,yi)Δσi
当 f ( x , y ) ≡ 1 , ∬ D 1 d σ = S f(x,y)≡1,\iint\limits_D1dσ=S f(x,y)≡1,D∬1dσ=S
例题1:10年4. 利用二重积分的定义求极限
分析:
lim
n
→
∞
∑
i
=
1
n
∑
j
=
1
n
n
(
n
+
i
)
(
n
2
+
j
2
)
=
lim
n
→
∞
1
n
2
∑
i
=
1
n
∑
j
=
1
n
1
(
1
+
i
n
)
[
1
+
(
j
n
)
2
]
=
∫
0
1
d
x
∫
0
1
1
(
1
+
x
)
(
1
+
y
2
)
d
y
\lim\limits_{n→∞}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\dfrac{n}{(n+i)(n^2+j^2)}=\lim\limits_{n→∞}\dfrac{1}{n^2}\sum\limits_{i=1}^n\sum\limits_{j=1}^n\dfrac{1}{(1+\dfrac{i}{n})[1+(\dfrac{j}{n})^2]}=\int_0^1dx\int_0^1\dfrac{1}{(1+x)(1+y^2)}dy
n→∞limi=1∑nj=1∑n(n+i)(n2+j2)n=n→∞limn21i=1∑nj=1∑n(1+ni)[1+(nj)2]1=∫01dx∫01(1+x)(1+y2)1dy
答案:D
(2)二重积分的几何意义
曲顶柱体的体积
2.二重积分的性质
(1)不等式性质
①保号性:若 f ( x , y ) ≤ g ( x , y ) f(x,y)≤g(x,y) f(x,y)≤g(x,y),则 ∬ D f ( x , y ) d x d y ≤ ∬ D g ( x , y ) d x d y \iint\limits_D f(x,y)dxdy≤\iint\limits_D g(x,y)dxdy D∬f(x,y)dxdy≤D∬g(x,y)dxdy
②保号性推论: ∣ ∬ D f ( x , y ) d x d y ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d x d y |\iint\limits_D f(x,y)dxdy|≤\iint\limits_D |f(x,y)|dxdy ∣D∬f(x,y)dxdy∣≤D∬∣f(x,y)∣dxdy 【积分的绝对值≤绝对值的积分】
③估值定理:
m
σ
≤
∬
D
f
(
x
,
y
)
d
x
d
y
≤
M
σ
mσ≤\iint\limits_D f(x,y)dxdy≤Mσ
mσ≤D∬f(x,y)dxdy≤Mσ
(2)二重积分的积分中值定理
∬ D f ( x , y ) d σ = f ( ξ , n ) ⋅ S \iint\limits_Df(x,y)dσ=f(ξ,n)·S D∬f(x,y)dσ=f(ξ,n)⋅S
定积分中值定理:某段上的定积分的值 = 该段上的某一点函数值 × 线段长度
二重积分中值定理:某个平面域内二重积分的值 = 该平面域内某一点的函数值 × 平面域的面积
例题1: 保号性
分析:
答案:B
例题2: 保号性
分析:
答案:A
例题3:09年2. 二重积分的奇偶对称性、保号性
分析:
①奇偶对称性:D2、D4关于x轴对称,ycos是y的奇函数,I2=I4=0
②保号性:ycosx在D1内为正,在D3内为负,∴I1>0,I3<0
答案:A
3.二重积分的计算
重积分化为累次积分:二重积分化为两次定积分
(1)直角坐标
(1)X型区域:先y后x
∬
D
f
(
x
,
y
)
d
σ
=
∫
a
b
d
x
∫
y
1
(
x
)
y
2
(
x
)
f
(
x
,
y
)
d
y
\iint\limits_Df(x,y)dσ=\int_a^bdx\int_{y_1(x)}^{y_2(x)}f(x,y)dy
D∬f(x,y)dσ=∫abdx∫y1(x)y2(x)f(x,y)dy
(2)Y型区域:先x后y
∬
D
f
(
x
,
y
)
d
σ
=
∫
c
d
d
y
∫
x
1
(
y
)
x
2
(
y
)
f
(
x
,
y
)
d
x
\iint\limits_Df(x,y)dσ=\int_c^ddy\int_{x_1(y)}^{x_2(y)}f(x,y)dx
D∬f(x,y)dσ=∫cddy∫x1(y)x2(y)f(x,y)dx
(2)极坐标
1.极坐标:先ρ后θ
∬
D
f
(
x
,
y
)
d
σ
=
∫
α
β
d
θ
∫
ρ
1
(
θ
)
ρ
2
(
θ
)
f
(
ρ
c
o
s
θ
,
ρ
s
i
n
θ
)
ρ
d
ρ
\iint\limits_Df(x,y)dσ=\int_α^βdθ\int_{ρ_1(θ)}^{ρ_2(θ)}f(ρcosθ,ρsinθ)ρdρ
D∬f(x,y)dσ=∫αβdθ∫ρ1(θ)ρ2(θ)f(ρcosθ,ρsinθ)ρdρ

2.直角坐标与极坐标的转换:
{
x
=
ρ
cos
θ
y
=
ρ
sin
θ
d
x
d
y
=
ρ
d
ρ
d
θ
\left\{\begin{aligned} x & = ρ\cosθ\\ y & = ρ\sinθ \\ {\rm d}x{\rm d}y & = ρ{\rm d}ρ{\rm d}θ \end{aligned}\right.
⎩
⎨
⎧xydxdy=ρcosθ=ρsinθ=ρdρdθ
3.适合极坐标的二重积分:
(1)函数:f(ρ)、f(θ)
(2)积分区域:圆域、圆环域、圆心在x轴或y轴上的偏心圆、圆心不在原点或坐标轴上的偏心圆(平移+极坐标)
①函数、积分域都满足:用极坐标
②函数、积分域都不满足:使用直角坐标
③一个满足一个不满足,则以函数为主。函数满足,积分域不满足,还是用极坐标。
4.圆心既不在原点,也不在坐标轴上时:平移 + 极坐标
{
x
−
x
0
=
ρ
cos
θ
y
−
y
0
=
ρ
sin
θ
\left\{\begin{aligned} x-x_0 & = ρ\cosθ\\ y-y_0 & = ρ\sinθ \end{aligned}\right.
{x−x0y−y0=ρcosθ=ρsinθ
5.广义极坐标 (D为椭圆域)
x
2
a
2
+
y
2
b
2
=
1
\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1
a2x2+b2y2=1:
令 u = x a , v = y b u=\dfrac{x}{a},v=\dfrac{y}{b} u=ax,v=by,则上述椭圆域可化为 圆域: u 2 + v 2 = 1 u^2+v^2=1 u2+v2=1
例题1:880 P35 二T7 椭圆域
答案:
(3)对称性
①奇偶对称性:关于坐标轴对称
1.奇偶对称性(偶倍奇零):
①积分区域D关于y轴对称,f是x的奇函数则二重积分为0,f是x的偶函数则是正半区域的2倍
②积分区域D关于x轴对称,f是y的奇函数则二重积分为0,f是y的偶函数则是正半区域的2倍
②轮换对称性:关于 y = x y=x y=x 对称
2.轮换对称性(变量对称性):
①若D关于y=x对称,则
∬
D
f
(
x
,
y
)
d
σ
=
∬
D
f
(
y
,
x
)
d
σ
\iint\limits_Df(x,y)dσ=\iint\limits_Df(y,x)dσ
D∬f(x,y)dσ=D∬f(y,x)dσ
②若D1为x,y互换的积分区域,则
∬
D
f
(
x
,
y
)
d
σ
=
∬
D
1
f
(
y
,
x
)
d
σ
\iint\limits_Df(x,y)dσ=\iint\limits_{D_1}f(y,x)dσ
D∬f(x,y)dσ=D1∬f(y,x)dσ 【积分区域和被积函数都交换】
变量对称性(轮换对称性)的原理:一元积分中的定积分与积分变量无关,在多元积分中的体现。
二重积分的轮换对称性:将所有y和x对调,积分值不变。
特别的,当积分域D关于y=x对称时,① ∬ D f ( x , y ) d σ = ∬ D f ( y , x ) d σ \iint_Df(x,y)dσ=\iint_Df(y,x)dσ ∬Df(x,y)dσ=∬Df(y,x)dσ、② ∬ D f ( x ) d σ = ∬ D f ( y ) d σ \iint_Df(x)dσ=\iint_Df(y)dσ ∬Df(x)dσ=∬Df(y)dσ
例题1:
分析:奇偶对称性、轮换对称性、极坐标
例题2:
分析:D2区域积分不好求,代换为
D
2
=
D
−
D
1
D_2=D-D_1
D2=D−D1
答案:
π
4
−
1
3
\dfrac{π}{4}-\dfrac{1}{3}
4π−31
例题3:
分析:观察D是否关于y=x对称,再看被积函数,考虑轮换对称性,简化计算
答案:
−
3
4
-\dfrac{3}{4}
−43
例题4:660 T263 轮换对称性的推广
分析:
答案:D
<br
(4)交接积分次序:画域、重新定限(二重积分化二次积分)
①直角坐标 交换积分次序
①画域:画出二重积分区域D
②重新定限:将X型区域变成Y型,或将Y型区域变为X型。
例题1:01年3.
分析: − ∫ − 1 0 d y ∫ 2 1 − y f ( x , y ) d x -\int_{-1}^0dy\int_2^{1-y}f(x,y)dx −∫−10dy∫21−yf(x,y)dx,注意dx的积分限故意写反了!要先提个负号出来!

答案: − ∫ 1 2 d x ∫ 1 − x 0 f ( x , y ) d y -\int_1^2dx\int_{1-x}^0f(x,y)dy −∫12dx∫1−x0f(x,y)dy
例题2: 极坐标化直角坐标
分析:ρ=cosθ,则ρ²=ρcosθ,即x²+y²=x,偏心圆
答案:D
例3: 直角坐标化极坐标
答案:
例题4:06年8. 二重积分:极坐标与直角坐标的转换
分析:①画域 ②重新定限
答案:C
②极坐标 交换积分次序
法一:先θ后r:r=c,是绕坐标原点的一组圆弧。
法二:把ρ,θ当作y,x,重新画直角坐标下的曲线。
例题1:660 T109
例题2:880 P35 二、T6
(二) 三重积分
1.三重积分的概念
1.三重积分的定义
2.三重积分的几何意义
质量
2.三重积分的性质
与二重积分对应
①不等式性质
②积分中值定理
3.三重积分的计算
(1)直角坐标
①先一后二(先单后重) / 投影法
∭
Ω
f
(
x
,
y
,
z
)
d
v
=
∬
D
x
y
d
x
d
y
∫
z
1
(
x
,
y
)
z
2
(
x
,
y
)
f
(
x
,
y
,
z
)
d
z
\iiint\limits_Ωf(x,y,z){\rm d}v=\iint\limits_{D_{xy}}{\rm d}x{\rm d}y\int_{z_1(x,y)}^{z_2(x,y)}f(x,y,z){\rm d}z
Ω∭f(x,y,z)dv=Dxy∬dxdy∫z1(x,y)z2(x,y)f(x,y,z)dz
例题1:23年19. 三重积分的计算:投影法
分析:
①高斯公式
②三重积分的计算:投影法
③对称性:奇偶对称性、轮换对称性
例题2:05年4.
分析:
解法1:球面坐标(计算量少)
解法2:(三重积分)投影法
答案: ( 2 − 2 ) π R 3 (2-\sqrt{2})πR³ (2−2)πR3
②先二后一 / 截面法
∭ Ω f ( x , y , z ) d v = ∫ z 1 z 2 d z ∬ D z f ( x , y , z ) d x d y \iiint\limits_Ωf(x,y,z){\rm d}v=\int_{z_1}^{z_2}dz\iint\limits_{D_z}f(x,y,z){\rm d}x{\rm d}y Ω∭f(x,y,z)dv=∫z1z2dzDz∬f(x,y,z)dxdy
对于f里只含z的三重积分,建议使用截面法: ∭ Ω f ( z ) d v = ∫ z 1 z 2 f ( z ) d z ∬ D z d x d y = ∫ z 1 z 2 f ( z ) ⋅ D z d z \iiint\limits_Ωf(z){\rm d}v=\int_{z_1}^{z_2}f(z)dz\iint\limits_{D_z}{\rm d}x{\rm d}y=\int_{z_1}^{z_2}f(z)·D_zdz Ω∭f(z)dv=∫z1z2f(z)dzDz∬dxdy=∫z1z2f(z)⋅Dzdz
例题2:18年17.
第二类曲面积分
→
高斯公式
三重积分
→
截面法
二重积分
→
极坐标
定积分
第二类曲面积分\xrightarrow{高斯公式} 三重积分\xrightarrow[]{截面法}二重积分\xrightarrow[]{极坐标}定积分
第二类曲面积分高斯公式三重积分截面法二重积分极坐标定积分
分析:补面+高斯公式 + 截面法 + 极坐标
∭
Ω
(
y
2
+
z
2
)
d
v
=
截面法
∫
0
1
d
x
∬
D
x
(
y
2
+
z
2
)
d
y
d
z
=
极坐标
∫
0
1
d
x
∫
0
2
π
d
θ
∫
0
1
−
x
2
3
ρ
2
⋅
ρ
d
ρ
\iiint\limits_Ω(y^2+z^2)dv\xlongequal{截面法}\int_0^1dx\iint\limits_{D_x}(y^2+z^2)dydz\xlongequal{极坐标}\int_0^1dx\int_0^{2π}dθ\int_0^{\sqrt{\frac{1-x^2}{3}}}ρ^2·ρdρ
Ω∭(y2+z2)dv截面法∫01dxDx∬(y2+z2)dydz极坐标∫01dx∫02πdθ∫031−x2ρ2⋅ρdρ
答案:
(2)柱坐标 (类似二重的极坐标)
1.柱坐标典型应用,旋转体:【因为旋转出来一定是圆,适合极坐标,加上z轴为柱坐标】
适合柱坐标的情况:
(1)被积函数为
F
(
x
,
y
,
z
)
=
φ
(
z
)
f
(
x
2
+
y
2
)
F(x,y,z)=φ(z)f(\sqrt{x^2+y^2})
F(x,y,z)=φ(z)f(x2+y2)
(2)空间区域为:
①圆柱
②圆锥(锥顶为平面)
③旋转抛物面
2.柱坐标本质:先直角坐标,再极坐标
3. d v = ρ d ρ d θ d z dv=ρdρdθdz dv=ρdρdθdz
例题1:10年12题的中间步骤
先一后二,柱面坐标
(3)球面坐标
d v = d x d y d z = r 2 sin φ d r d φ d θ ∭ Ω f ( x , y , z ) = ∭ Ω F ( r , φ , θ ) r 2 sin φ d r d φ d θ = ∫ α β d θ ∫ α ′ β ‘ sin φ d φ ∫ r 1 r 2 F ( r , φ , θ ) r 2 d r {\rm d}v={\rm d}x{\rm d}y{\rm d}z=r²\sinφ{\rm d}r{\rm d}φ{\rm d}θ\\[3mm] \iiint\limits_Ωf(x,y,z)=\iiint\limits_ΩF(r,φ,θ)r²\sinφ{\rm d}r{\rm d}φ{\rm d}θ=\int_α^β{\rm d}θ\int_{α'}^{β‘}\sinφ{\rm d}φ\int_{r_1}^{r_2}F(r,φ,θ)r²{\rm d}r dv=dxdydz=r2sinφdrdφdθΩ∭f(x,y,z)=Ω∭F(r,φ,θ)r2sinφdrdφdθ=∫αβdθ∫α′β‘sinφdφ∫r1r2F(r,φ,θ)r2dr
适合的空间区域:
①球体
②冰淇淋圆锥(锥顶为球面)
例题1:09年12.
分析:
解1:轮换对称性 + 球坐标
解2: ∭ f ( z ) d v \iiint f(z)dv ∭f(z)dv,用截面法:根据勾股定理, r 2 = R 2 − z 2 = 1 − z 2 ∴ D z = π r 2 = π ( 1 − z 2 ) r^2=R^2-z^2=1-z^2 ∴D_z=πr^2=π(1-z^2) r2=R2−z2=1−z2∴Dz=πr2=π(1−z2)
答案: 4 15 π \dfrac{4}{15}π 154π
例题2:05年4.
分析:
答案: ( 2 − 2 ) π R 3 (2-\sqrt{2})πR³ (2−2)πR3
例题3:24李林四(一)17. 球面坐标
答案:
(4)对称性
①关于坐标面的对称性(偶倍奇零)
关于某坐标轴对称,或关于某坐标平面对称,奇函数积分为0.
例题1:07年18. 椭圆域:也可以偶倍奇零。看到奇函数就要考虑是否有对称性可以直接得0
分析:
在求
−
∬
D
x
y
3
x
y
d
x
d
y
-\iint\limits_{D_{xy}}3xy\ {\rm d}x{\rm d}y
−Dxy∬3xy dxdy 时,虽然是椭圆域。但考虑到椭圆域和圆域一样也有关于x轴、y轴对称的积分偶倍奇零的性质,因此3xy关于x轴、y轴均为奇函数,该积分直接得0
答案: π − 0 = π π-0=π π−0=π
②轮换对称性
轮换对称性:若积分区域Ω 轮换x、y、z(使y代替x,z代替y,x代替z),函数不变,则三者地位相等,可以互相代替
例题1:15年12. 求三重积分:轮换对称性 + 截面法
分析:
答案: 1 4 \dfrac{1}{4} 41
例题2:18年12. 轮换对称性
分析:轮换对称性、可代入、三和平方公式
答案: − π 3 -\dfrac{π}{3} −3π
本题在2018年时的难度系数为0.026,低的惊人,只有2.6%的人做对了。可见轮换对称性的杀伤力。
例题3:07年14. 关于坐标面的对称性、轮换对称性
分析:
∣
x
∣
+
∣
y
∣
+
∣
z
∣
=
1
|x|+|y|+|z|=1
∣x∣+∣y∣+∣z∣=1 是正八面体 。
考虑曲面Σ关于yOz平面对称,则关于x的奇函数的曲面积分为0,即
∯
Σ
x
d
S
=
0
\oiint\limits_Σx\ {\rm d}S=0
Σ∬x dS=0
∴
∯
Σ
(
x
+
∣
y
∣
)
d
S
=
∯
Σ
∣
y
∣
d
S
=
轮换对称性
1
3
∯
Σ
(
∣
x
∣
+
∣
y
∣
+
∣
z
∣
)
d
S
=
1
3
∯
Σ
d
S
\oiint\limits_Σ(x+|y|)\ {\rm d}S=\oiint\limits_Σ|y|\ {\rm d}S\xlongequal{轮换对称性}\dfrac{1}{3}\oiint\limits_Σ(|x|+|y|+|z|)\ {\rm d}S=\dfrac{1}{3}\oiint\limits_Σ{\rm d}S
Σ∬(x+∣y∣) dS=Σ∬∣y∣ dS轮换对称性31Σ∬(∣x∣+∣y∣+∣z∣) dS=31Σ∬dS
观察该正八面体 ∣ x ∣ + ∣ y ∣ + ∣ z ∣ = 1 |x|+|y|+|z|=1 ∣x∣+∣y∣+∣z∣=1,其在第一卦限上的表面积为一个正三角形,边长为 2 \sqrt{2} 2,则正三角形的面积为 3 4 a 2 = 3 4 × 2 = 3 2 \dfrac{\sqrt{3}}{4}a²=\dfrac{\sqrt{3}}{4}×2=\dfrac{\sqrt{3}}{2} 43a2=43×2=23
则 1 3 ∯ Σ d S = 1 3 × 8 × 3 2 = 4 3 3 \dfrac{1}{3}\oiint\limits_Σ{\rm d}S=\dfrac{1}{3}×8×\dfrac{\sqrt{3}}{2}=\dfrac{4\sqrt{3}}{3} 31Σ∬dS=31×8×23=343

答案: 4 3 3 \dfrac{4\sqrt{3}}{3} 343