概率论与数理统计:Ch1.随机事件及其概率

概率论

在这里插入图片描述
在这里插入图片描述

Ch1. 随机事件及其概率

1.基本概念

①古典概型求概率
②几何概型求概率
③七大公式求概率
④独立性

(1)随机试验、随机事件、样本空间

1.随机试验 E
在这里插入图片描述


2.随机事件 A、B、C
必然事件 Ω P ( Ω ) = 1 P(Ω)=1 P(Ω)=1
不可能事件 Ø P ( Ø ) = 0 P(Ø)=0 P(Ø)=0

在这里插入图片描述


3.样本空间
样本点 ω = 基本事件
样本空间 Ω:样本点的全体组成的集合

在这里插入图片描述


(2)事件的关系和运算

①定义

(一) 关系:包含、相等、相容、(互不相容)互斥、对立
(二) 运算:和(并)、差、积(交)

(一) 事件的关系
1.包含
(1)概念:
在这里插入图片描述
(2)性质:
A ⊂ B A \subset B AB,则 P ( A ) ≤ P ( B ) P(A)≤P(B) P(A)P(B)
A B ⊂ A AB\subset A ABA A B ⊂ B AB\subset B ABB,即 P(AB)≤P(A)且P(AB)≤P(B)

(3)若事件C发生必然导致事件A与B同时发生,则A、B、C事件关系为: C ⊂ A B C\subset AB CAB


2.相等
在这里插入图片描述

3.相容
在这里插入图片描述


4.互不相容(互斥)

(1)定义:
若事件A,B互斥,则
①事件角度:AB=Ø
②概率角度:P(AB)=0

(2)性质:
A B = Ø AB=Ø AB=Ø,则 A ⊆ B ‾ A\subseteq \overline B AB P ( A ) ≤ P ( B ‾ ) P(A)≤P(\overline B) P(A)P(B)

在这里插入图片描述


5.对立:对立事件、逆事件
①AB=Ø 且 A∪B=Ω (即 A ˉ \bar{A} Aˉ=B)
②P(AB)=0 且 P(A)+P(B)=1

在这里插入图片描述


(二)事件的运算
1.和(并):A∪B


2.差: A − B = A ∩ B ‾ = A B ‾ A-B=A∩\overline{B}=A\overline{B} AB=AB=AB
在这里插入图片描述


3.积(交):A∩B 或 AB

交∩ 的优先级高于并∪。如要先并,需要加括号。



例题1:15年7.   交与并、加法公式
在这里插入图片描述

分析:交的概率大于等于并的概率

答案:C


例题2:660 T492   互斥: A B = Ø AB=Ø AB=Ø,则 A ⊂ B ‾ A\subset \overline B AB P ( A ) ≤ P ( B ‾ ) P(A)≤P(\overline B) P(A)P(B)
在这里插入图片描述

分析:
∵A与B互不相容,∴ A B = Ø AB=Ø AB=Ø,则 A ⊆ B ‾ A\subseteq \overline B AB P ( A ) ≤ P ( B ‾ ) P(A)≤P(\overline B) P(A)P(B),即 P(A) ≤ 1-P(B),即 P(A)+P(B) ≤ 1.
则当P(A)=1时,为保证 P(A)+P(B) ≤ 1,则必有 P(B)=0

答案:C



②运算法则:对偶律

5.对偶律 (德·摩根律):长杠变短杠,开口换方向

(1) A ˉ B ˉ \bar{A}\bar{B} AˉBˉ = A ˉ ∩ B ˉ =\bar{A}∩\bar{B} =AˉBˉ = A ∪ B ‾ =\overline{A∪B} =AB:A、B均不发生

P ( A ˉ B ˉ ) = P ( A ∪ B ‾ ) = 1 − P ( A ∪ B ) = 1 − P ( A ) − P ( B ) + P ( A B ) P(\bar{A}\bar{B})=P(\overline{A∪B})=1-P(A∪B)=1-P(A)-P(B)+P(AB) P(AˉBˉ)=P(AB)=1P(AB)=1P(A)P(B)+P(AB)   【21年8.】

(2) A B ‾ = A ‾ ∪ B ‾ \overline{AB}=\overline{A}∪\overline{B} AB=AB:A、B至少有一个不发生

方法:转化为带的来看含义


在这里插入图片描述



例题1:21年8.   随机事件的概率计算
在这里插入图片描述

分析:
在这里插入图片描述

答案:D


例题2:  随机事件的概率计算:德摩根率
在这里插入图片描述

分析:
在这里插入图片描述

答案:A


例题3:
在这里插入图片描述
分析:
A B ‾ ‾ = A ∩ B ‾ ‾ = A ‾ ∪ B \overline{A\overline{B}}=\overline{A∩\overline{B}}=\overline{A}∪B AB=AB=AB

答案:C


例题4:
在这里插入图片描述
法一:推导
法二:画图
在这里插入图片描述




(3)概率的定义

1.用频率去估计概率

在这里插入图片描述


2.概率的公理化定义
①非负性: P ( A ) ≥ 0 P(A)≥0 P(A)0
②规范性: P ( Ω ) = 1 P(Ω)=1 P(Ω)=1
③可列可加性:任意可列个两两互不相容的事件 A 1 , A 2 , . . . , A n A_1,A_2,...,A_n A1,A2,...,An,有 P ( A 1 ∪ A 2 ∪ . . . ∪ A n ) = P ( A 1 ) + P ( A 2 ) + . . . + P ( A n ) P(A_1∪A_2∪...∪A_n)=P(A_1)+P(A_2)+...+P(A_n) P(A1A2...An)=P(A1)+P(A2)+...+P(An) 【完备事件组】


(4)概率的性质

(1)有界性:
对任意事件A,有 0 ≤ P ( A ) ≤ 1 0≤P(A)≤1 0P(A)1

注:对于几何概型:若P(A)=0,不能断言 A=Ø;若P(A)=1,不能断言 A=Ω;
但反之则对:若A是空集Ø,则P(A)=0;若A是全集Ω,则P(A)=1。即一定有 P ( Ø ) = 0 , P ( Ω ) = 1 P(Ø)=0,P(Ω)=1 P(Ø)=0,P(Ω)=1
在这里插入图片描述

(2)单调性:
对于A,B两个事件,若有 A ⊂ B A\subset B AB,则有:
①P(A)≤P(B)
②P(B-A)=P(B)-P(A)


(5)概率计算

跳转链接

排列组合
排列组合
符号 A n m A_n^m Anm C n m C_n^m Cnm
公式 A n m = n ( n − 1 ) . . . ( n − m − 1 ) A_n^m=n(n-1)...(n-m-1) Anm=n(n1)...(nm1) C n m = n ( n − 1 ) . . . ( n − m − 1 ) m ! C_n^m=\dfrac{n(n-1)...(n-m-1)}{m!} Cnm=m!n(n1)...(nm1)
关系 A n m = A_n^m= Anm= C n m ⋅ m ! C_n^m·m! Cnmm!

在这里插入图片描述



2.等可能概型

1.古典概型 (离散)

古典概型(离散),研究工具:①排列组合 ②加法原理、乘法原理 ③直接数数
在这里插入图片描述


求法:
(1)直接用定义求概率: P ( A ) = k n P(A)=\dfrac{k}{n} P(A)=nk

(2)随机分配:m个可辩质点,放到n个盒子中
①每个盒子可以放任意多个质点:有 n m n^m nm 种放法
②每个盒子只能放一个质点:有 A n m = n ( n − 1 ) . . . ( n − m + 1 ) A_n^m=n(n-1)...(n-m+1) Anm=n(n1)...(nm+1) 种放法

在这里插入图片描述


(3)简单随机抽样

含义共有多少种不同的取法
①先后有放回m个球,先后有放回地取n次 m n m^n mn
②先后无放回m个球,先后无放回地取n次 A m n = m ( m − 1 ) . . . ( m − n + 1 ) A_m^n=m(m-1)...(m-n+1) Amn=m(m1)...(mn+1)
③任取(一次性同时拿出)从n中一次性取m个球 C n m C_n^m Cnm

在这里插入图片描述


2.几何概型 (连续)

几何概型(连续),研究工具:几何方法、微积分

P ( A ) = S A 的几何度量 Ω 的几何度量 P(A)=\dfrac{S_A的几何度量}{Ω的几何度量} P(A)=Ω的几何度量SA的几何度量

几何度量:长度、面积、体积

在这里插入图片描述



例题1:07年16.   几何概型
在这里插入图片描述

分析:
法一:直接观察,使得 x-y绝对值小于0.5

显然,概率应为 3 4 \dfrac{3}{4} 43


法二:随机变量的概率

文字语言数学语言
两个数之差的绝对值 ∣ X − Y ∣ \lvert X-Y\rvert XY
两个数之差的绝对值小于 1 2 \dfrac{1}{2} 21 ∣ X − Y ∣ < 1 2 \lvert X-Y\rvert<\dfrac{1}{2} XY<21
两个数之差的绝对值小于 1 2 \dfrac{1}{2} 21的概率 P {   ∣ X − Y ∣ < 1 2   } P\{\ \lvert X-Y\rvert<\dfrac{1}{2}\ \} P{ XY<21 }

P { ∣ X − Y ∣ < 1 2 } = P { − 1 2 < X − Y < 1 2 } = P { − 1 2 < Y − X < 1 2 } = P { X − 1 2 < Y < X + 1 2 } P\{|X-Y|<\dfrac{1}{2}\}=P\{-\dfrac{1}{2}<X-Y<\dfrac{1}{2}\}=P\{-\dfrac{1}{2}<Y-X<\dfrac{1}{2}\}=P\{X-\dfrac{1}{2}<Y<X+\dfrac{1}{2}\} P{XY<21}=P{21<XY<21}=P{21<YX<21}=P{X21<Y<X+21}

即在 0 < x < 1 , 0 < y < 1 0<x<1,0<y<1 0<x<1,0<y<1区域内,落在 y = x + 1 2 y=x+\dfrac{1}{2} y=x+21 y = x − 1 2 y=x-\dfrac{1}{2} y=x21 之间的概率。

在这里插入图片描述

答案: 3 4 \dfrac{3}{4} 43




3.七大公式

(1)逆事件概率公式

P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)


(2)加法公式

1.任意事件
①两事件和的概率: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A∪B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)

三事件和的概率:
A、B、C至少有一个发生的概率:
P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( B C ) − P ( A C ) + P ( A B C ) P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(AC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(BC)P(AC)+P(ABC)

③四事件和的概率: P ( A ∪ B ∪ C ∪ D ) P(A∪B∪C∪D) P(ABCD)
= P ( A ) + P ( B ) + P ( C ) + P ( D ) =P(A)+P(B)+P(C)+P(D) =P(A)+P(B)+P(C)+P(D)
− P ( A B ) − P ( A C ) − P ( A D ) − P ( B C ) − P ( B D ) − P ( C D ) -P(AB)-P(AC)-P(AD)-P(BC)-P(BD)-P(CD) P(AB)P(AC)P(AD)P(BC)P(BD)P(CD)
+ P ( A B C ) + P ( A B D ) + P ( A C D ) + P ( B C D ) +P(ABC)+P(ABD)+P(ACD)+P(BCD) +P(ABC)+P(ABD)+P(ACD)+P(BCD)
− P ( A B C D ) -P(ABCD) P(ABCD)

2.两两互不相容事件:
互斥条件下的加法公式,和的概率 = 概率的和
在这里插入图片描述



例题1:24李林六(一)8.
在这里插入图片描述

分析:
在这里插入图片描述

答案:A



(3)减法公式

P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ‾ ) P(A-B)=P(A)-P(AB)=P(A\overline{B}) P(AB)=P(A)P(AB)=P(AB)

在这里插入图片描述


(4)条件概率公式

条件概率:A发生条件下,B发生的概率,记为 P ( B ∣ A ) P(B|A) P(BA),前提要求P(A)>0 【垂帘听政】

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\dfrac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

注:①条件概率也是概率,概率的性质仍都满足
在这里插入图片描述



例题1:12年14.   条件概率
在这里插入图片描述

分析:
在这里插入图片描述

答案:3/4


例题2:18年14.   条件概率、事件的独立性
在这里插入图片描述

分析:关键是分析出P(AC(AB∪C))=P(AC)

因为BC=Ø,∴P(BC)=0,P(ABC)=0
P ( A C ∣ A B ∪ C ) = P ( A C ( A B ∪ C ) ) P ( A B ∪ C ) = P ( A B C ∪ A C ) ) P ( A B ∪ C ) = P ( A C ) ) P ( A B ) + P ( C ) − P ( A B C ) = P ( A ) P ( C ) ) P ( A ) P ( B ) + P ( C ) = 1 4 P(AC|AB∪C)=\dfrac{P(AC(AB∪C))}{P(AB∪C)}=\dfrac{P(ABC∪AC))}{P(AB∪C)}=\dfrac{P(AC))}{P(AB)+P(C)-P(ABC)}=\dfrac{P(A)P(C))}{P(A)P(B)+P(C)}=\dfrac{1}{4} P(ACABC)=P(ABC)P(AC(ABC))=P(ABC)P(ABCAC))=P(AB)+P(C)P(ABC)P(AC))=P(A)P(B)+P(C)P(A)P(C))=41
∴ P ( C ) = 1 4 ∴P(C)=\dfrac{1}{4} P(C)=41

在这里插入图片描述
答案: 1 4 \dfrac{1}{4} 41



(5)乘法公式

P ( A B ) = P ( A ) ⋅ P ( B ∣ A ) P(AB)=P(A)·P(B|A) P(AB)=P(A)P(BA)

P ( A 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P(A_1A_2A_3)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2) P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2) 【上过台的,到帘子后面】


(6)全概率公式

1.完备事件组:任意两两互斥,概率有可列可加性

2.全概率公式 【全集分解公式,由因导果】
P ( B ) = ∑ i = 1 n P ( B A i ) = P ( B A 1 ) + P ( B A 2 ) + . . . P ( B A n ) = P ( A 1 ) P ( B ∣ A 1 ) + P ( A 2 ) P ( B ∣ A 2 ) + . . . + P ( A n ) P ( B ∣ A n ) P(B) = \sum\limits_{i=1}^nP(BA_i)=P(BA_1)+P(BA_2)+...P(BA_n)=P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+...+P(A_n)P(B|A_n) P(B)=i=1nP(BAi)=P(BA1)+P(BA2)+...P(BAn)=P(A1)P(BA1)+P(A2)P(BA2)+...+P(An)P(BAn) 【谁去干的概率×干成功的概率】

在这里插入图片描述

例: P { Y ≤ y } = P { X = 1 } ⋅ P { Y ≤ y ∣ X = 1 } + P { X = 2 } ⋅ P { Y ≤ y ∣ X = 2 } P\{Y≤y\} = P\{X=1\}·P\{Y≤y|X=1\}+ P\{X=2\}·P\{Y≤y|X=2\} P{Yy}=P{X=1}P{YyX=1}+P{X=2}P{YyX=2}
对y的取值进行分类讨论:①y<0 ②0≤y<1 ③1≤y<2 ④y>2



例题1:全概率公式
在这里插入图片描述

分析:分两次全概率:①抽验样本为正品 ②该箱通过验收
在这里插入图片描述

答案:0.887



(7)贝叶斯公式 (先验概率)

贝叶斯公式(逆概率公式,执果索因):已知B发生了,求是谁干的?

P ( A k ∣ B ) = P ( B A k ) P ( B ) = P ( A k ) P ( B ∣ A k ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) = 全概率的某一项 全概率公式 P(A_k|B)=\dfrac{P(BA_k)}{P(B)}=\dfrac{P(A_k)P(B|A_k)}{\sum\limits_{i=1}^nP(A_i)P(B|A_i)}=\dfrac{全概率的某一项}{全概率公式} P(AkB)=P(B)P(BAk)=i=1nP(Ai)P(BAi)P(Ak)P(BAk)=全概率公式全概率的某一项

在全概率时,每个人干的可能性一般是等可能的。但当事件发生后,每个人干的可能性就发生了变化。
即贝叶斯公式:增加信息,概率的大小可能要修正



例题1:24李林六(五)8.   贝叶斯公式 + 逆事件
在这里插入图片描述

分析:
在这里插入图片描述

答案:C


例题2:21年16.   全概率公式 + 条件概率
在这里插入图片描述
分析:

易错点:XY的分布律,当XY=1时,要用条件概率求出 3/10,而不是用 P{X=1}·P{Y=1}=1/4。没说X与Y独立。

答案: 1 5 \dfrac{1}{5} 51


例题3:23李林六(三)16. ?
在这里插入图片描述

分析:法1:特殊值   法2:正面解
在这里插入图片描述
答案:2


例题4:贝叶斯公式
在这里插入图片描述

分析:
在这里插入图片描述

答案: 3 28 \dfrac{3}{28} 283




4.独立性

(1)事件的独立

(1)数学定义:事件A、B独立 ⇔ P ( A B ) = P ( A ) ⋅ P ( B ) \Leftrightarrow P(AB)=P(A)·P(B) P(AB)=P(A)P(B)

不可能事件Ø,与任意事件独立

(2)可推得A、B独立条件下的条件概率公式: P ( A ∣ B ) = P ( A ) , P ( B ∣ A ) = P ( B ) P(A|B)=P(A),P(B|A)=P(B) P(AB)=P(A)P(BA)=P(B) 【描述性定义:结果不受影响 】

(3)性质
若事件A、B独立,则有:
P ( A B ) = P ( A ) ⋅ P ( B ) P(AB)=P(A)·P(B) P(AB)=P(A)P(B)
P ( A ∣ B ) = P ( A ) , P ( B ∣ A ) = P ( B ) P(A|B)=P(A),P(B|A)=P(B) P(AB)=P(A)P(BA)=P(B)
A、B独立 ⇔ \Leftrightarrow A 、 B ‾ A、\overline{B} AB独立 ⇔ \Leftrightarrow A ‾ 、 B \overline{A}、B AB独立 ⇔ \Leftrightarrow A ‾ \overline{A} A B ‾ \overline{B} B独立
④若P(A)>0且P(B)>0,则A、B相容 【P(AB)=P(A)·P(B)>0≠0】


(3)n个事件相互独立、n个事件两两独立

在这里插入图片描述



例题1:
在这里插入图片描述

分析:

答案:B




(2)n重伯努利试验

n重伯努利试验:(n重伯努利概型 / 独立试验序列概型)
X~B(n,p),则事件A发生k次的概率为: P { X = k } = C n k p k ( 1 − p ) n − k   ( k = 0 , 1 , 2 , . . . , n ) P\{X=k\}=C_n^kp^k(1-p)^{n-k} \ (k=0,1,2,...,n) P{X=k}=Cnkpk(1p)nk (k=0,1,2,...,n)

在这里插入图片描述

在这里插入图片描述

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱德华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值