概率论与数理统计:Ch6.数理统计(抽样分布)

Ch6. 数理统计

(一) 总体与样本

1.概念:
(1)总体
总体:研究对象的全体
个体:组成总体的每一个元素
在这里插入图片描述

(2)样本
简单随机样本,简称样本。样本与总体 独立同分布。(取自总体的样本,相互之间都独立,且与总体分布相同)
在这里插入图片描述

(3)样本的分布
在这里插入图片描述


2.性质:
X 1 , X 2 , X 3 , . . . , X n ( n > 1 ) X_1,X_2,X_3,...,X_n(n>1) X1,X2,X3,...,Xnn>1为来自总体 N(μ,σ²) (σ>0)的简单随机样本(独立同分布), X ‾ = 1 n ∑ i = 1 n X i \overline{X}=\dfrac{1}{n}\sum\limits_{i=1}^nX_i X=n1i=1nXi,则有:
X i ∼ N ( μ , σ 2 ) X_i\sim N(μ,σ²) XiN(μ,σ2)
X ‾ ∼ N ( μ , σ 2 n ) \overline{X} \sim N(μ,\dfrac{σ²}{n}) XN(μ,nσ2)
C o v ( X i , X ‾ ) = σ 2 n {\rm Cov}(X_i,\overline{X})=\dfrac{σ²}{n} Cov(Xi,X)=nσ2

证明:


3.样本与总体 独立同分布,期望相同,方差也相同
①样本的期望与总体的期望相同: E ( X i ) = E ( X ) E(X_i) = E(X) E(Xi)=E(X) ∑ i = 1 n E ( X i ) = n E ( X ) \sum\limits_{i=1}^nE(X_i) = nE(X) i=1nE(Xi)=nE(X)
②样本的方差与总体的方差相同: D ( X i ) = D ( X ) D(X_i) = D(X) D(Xi)=D(X) ∑ i = 1 n D ( X i ) = n D ( X ) \sum\limits_{i=1}^nD(X_i) = nD(X) i=1nD(Xi)=nD(X)



例题1:18年23(2)
例题2:16年23(1)




(二) 统计量 (5个)

1.概念
(1)统计量的定义
在这里插入图片描述

(2)顺序统计量

顺序统计量定义分布函数概率密度
①第n顺序统计量 X ( n ) X_{(n)} X(n) max ⁡ { X 1 , X 2 , . . . , X n } \max\{X_1,X_2,...,X_n\} max{X1,X2,...,Xn} [ F ( x ) ] n [F(x)]^n [F(x)]n n [ F ( x ) ] n − 1 f ( x ) n[F(x)]^{n-1}f(x) n[F(x)]n1f(x)
②第1顺序统计量 X ( 1 ) X_{(1)} X(1) min ⁡ { X 1 , X 2 , . . . , X n } \min\{X_1,X_2,...,X_n\} min{X1,X2,...,Xn} 1 − [ 1 − F ( x ) ] n 1-[1-F(x)]^n 1[1F(x)]n n [ 1 − F ( x ) ] n − 1 f ( x ) n[1-F(x)]^{n-1}f(x) n[1F(x)]n1f(x)

在这里插入图片描述


2.常用统计量

①样本均值: X ˉ = 1 n ∑ i = 1 n X i \bar{X}=\dfrac{1}{n}\sum\limits_{i=1}^nX_i Xˉ=n1i=1nXi   ∴ ∑ i = 1 n X i = n X ˉ \sum\limits_{i=1}^nX_i=n\bar{X} i=1nXi=nXˉ

样本方差: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S²=\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\bar{X})² S2=n11i=1n(XiXˉ)2 = 1 n − 1 ( ∑ i = 1 n X i 2 − n X ˉ 2 ) =\dfrac{1}{n-1}(\sum\limits_{i=1}^nX_i^2-n\bar{X}^2) =n11(i=1nXi2nXˉ2) E ( S 2 ) = σ 2 E(S^2)=σ² E(S2)=σ2

样本标准差: S = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S=\sqrt{\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\bar{X})²} S=n11i=1n(XiXˉ)2

③样本k阶(原点)矩: A k = 1 n ∑ i = 1 n X i k ( k = 1 , 2 , . . . ) A_k=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^k (k=1,2,...) Ak=n1i=1nXik(k=1,2,...)

④样本k阶中心矩: B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k ( k = 2 , 3 , . . . ) B_k=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})^k(k=2,3,...) Bk=n1i=1n(XiXˉ)k(k=2,3,...)


①k阶原点矩是 ( X i − 0 ) k (X_i-0)^k (Xi0)k,k阶中心矩是 ( X i − X ˉ ) k (X_i-\bar{X})^k (XiXˉ)k
②样本均值是一阶原点矩,二阶中心矩 B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})²=\dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2
在这里插入图片描述


(1)样本方差 S²

1.定义: S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S^2=\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\bar{X})^2 S2=n11i=1n(XiXˉ)2

2.分布: n − 1 σ 2 S 2 ∼ χ 2 ( n − 1 ) \dfrac{n-1}{σ^2}S^2 \sim \chi^2(n-1) σ2n1S2χ2(n1)

3.数字特征: E ( S 2 ) = σ 2 , D ( S 2 ) = 2 σ 4 n − 1 E(S^2)=σ^2,D(S^2)=\dfrac{2σ^4}{n-1} E(S2)=σ2D(S2)=n12σ4

在这里插入图片描述



(2) X i − X ‾ X_i-\overline{X} XiX

1.结论:设 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn为总体 X ∼ N ( μ , σ 2 ) X\sim N(μ,σ²) XN(μ,σ2)的简单随机样本,则:
C o v ( X i , X ‾ ) = σ 2 n {\rm Cov}(X_i,\overline{X})=\dfrac{σ²}{n} Cov(Xi,X)=nσ2

X i − X ‾ ∼ N ( 0 , n − 1 n σ 2 ) = N ( 0 , ( 1 − 1 n ) σ 2 ) X_i-\overline{X}\sim N(0,\dfrac{n-1}{n}σ²)=N(0,(1-\dfrac{1}{n})σ²) XiXN(0,nn1σ2)=N(0,(1n1)σ2)

S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 = n n − 1 ( X i − X ‾ ) 2 S^2=\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2=\dfrac{n}{n-1}(X_i-\overline{X})^2 S2=n11i=1n(XiX)2=n1n(XiX)2


2.证明:
X i ∼ N ( μ , σ 2 ) , X ‾ ∼ N ( μ , σ 2 n ) X_i\sim N(μ,σ²),\overline{X}\sim N(μ,\dfrac{σ^2}{n}) XiN(μ,σ2)XN(μ,nσ2)
由于 X i X_i Xi X ‾ \overline{X} X不独立,不满足独立可加性。
E ( X i − X ‾ ) = E ( X i ) − E ( X ‾ ) = μ − μ = 0 E(X_i-\overline{X})=E(X_i)-E(\overline{X})=μ-μ=0 E(XiX)=E(Xi)E(X)=μμ=0
D ( X i − X ‾ ) = D ( X i ) + D ( X ‾ ) − 2 C o v ( X i , X ‾ ) = σ 2 + σ 2 n − 2 × σ 2 n = ( 1 − 1 n ) σ 2 = n − 1 n σ 2 D(X_i-\overline{X})=D(X_i)+D(\overline{X})-2{\rm Cov}(X_i,\overline{X})=σ²+\dfrac{σ^2}{n}-2×\dfrac{σ²}{n}=(1-\dfrac{1}{n})σ²=\dfrac{n-1}{n}σ² D(XiX)=D(Xi)+D(X)2Cov(Xi,X)=σ2+nσ22×nσ2=(1n1)σ2=nn1σ2
X i − X ‾ ∼ N ( 0 , n − 1 n σ 2 ) X_i-\overline{X}\sim N(0,\dfrac{n-1}{n}σ^2) XiXN(0,nn1σ2)



例题1:24李林六(五)9.
在这里插入图片描述

分析:
在这里插入图片描述

答案:B


例题2:24李林四(一)10.
在这里插入图片描述

分析:
在这里插入图片描述

答案:B




3.矩的概念

①原点矩 A

样本k阶原点矩 A k A_k Ak总体k阶原点矩
A 1 = 1 n ∑ i = 1 n X i = X ˉ A_1=\dfrac{1}{n}\sum\limits_{i=1}^nX_i=\bar{X} A1=n1i=1nXi=Xˉ
(样本一阶原点矩,即为均值)
E(X)
A 2 = 1 n ∑ i = 1 n X i 2 A_2=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^2 A2=n1i=1nXi2E(X²)
A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , . . . A_k=\dfrac{1}{n}\sum\limits_{i=1}^nX_i^k,k=1,2,... Ak=n1i=1nXik,k=1,2,...E(Xk)

②中心距 B

样本k阶中心矩 B k B_k Bk总体k阶中心矩
B 1 = 1 n ∑ i = 1 n ( X i − X ˉ ) B_1=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X}) B1=n1i=1n(XiXˉ) E ( X − E X ) E(X-EX) E(XEX)
B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})²=\dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2 E [ ( X − E X ) 2 ] = D X E[(X-EX)²]=DX E[(XEX)2]=DX
B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k B_k=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})^k Bk=n1i=1n(XiXˉ)k E [ ( X − E X ) k ] E[(X-EX)^k] E[(XEX)k]

总体矩的矩估计量为样本矩:
①EX的矩估计量为 A 1 = 1 n ∑ i = 1 n X i = X ˉ A_1=\dfrac{1}{n}\sum\limits_{i=1}^nX_i=\bar{X} A1=n1i=1nXi=Xˉ
②DX的矩估计量为 B 2 = 1 n ∑ i = 1 n ( X i − X ˉ ) 2 = n − 1 n S 2 B_2=\dfrac{1}{n}\sum\limits_{i=1}^n(X_i-\bar{X})²=\dfrac{n-1}{n}S^2 B2=n1i=1n(XiXˉ)2=nn1S2



(三) 抽样分布 (3个)

三大抽样分布,均与正态总体有关。总体与样本服从标准正态分布N(0,1)


0.上α分位点

正态分布的上α分位点: Φ ( Z α 2 ) = 1 − α 2 Φ(Z_{\frac{α}{2}})=1-\dfrac{α}{2} Φ(Z2α)=12α

在这里插入图片描述
在这里插入图片描述


1.χ²分布

1.χ²分布的定义
X 1 ∼ N ( 0 , 1 ) X_1\sim N(0,1) X1N(0,1),则 X 1 2 ∼ χ 2 ( 1 ) X_1^2\sim χ^2(1) X12χ2(1)

设X1,X2,…,Xn为正态总体N(0,1)的样本 ( X i X_i Xi相互独立且同分布),则把统计量
χ 2 = X 1 2 + X 2 2 + . . . + X n 2 χ^2=X_1^2+X_2^2+...+X_n^2 χ2=X12+X22+...+Xn2
服从的分布称为 自由度为n的χ²分布,记作 χ²~χ²(n)


2.χ²分布的上α分位点
在这里插入图片描述


3.χ²分布的性质

  1. χ²分布的数字特征: E(χ²)=n,D(χ²)=2n
  2. χ²分布的独立可加性:设 χ 1 2 ∼ χ 2 ( n 1 ) , χ 2 2 ∼ χ 2 ( n 2 ) χ²_1\sim χ²(n_1),χ²_2\sim χ²(n_2) χ12χ2(n1),χ22χ2(n2),且 χ 1 2 χ²_1 χ12 χ 2 2 χ²_2 χ22相互独立,则 χ 1 2 + χ 2 2 ∼ χ 2 ( n 1 + n 2 ) χ²_1+χ²_2\simχ²(n_1+n_2) χ12+χ22χ2(n1+n2)

例题1:
在这里插入图片描述

分析:
在这里插入图片描述

答案: 1 20 \dfrac{1}{20} 201 1 100 \dfrac{1}{100} 1001、2


例题2:11年23.(2)




2.t分布

1.t分布定义
X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) X\sim N(0,1), Y\sim χ^2(n) XN(0,1),Yχ2(n),且X,Y相互独立,则把统计量 t = X Y n t=\dfrac{X}{\sqrt{\dfrac{Y}{n}}} t=nY X
服从的分布称为自由度为n的t分布,记作 t ∼ t ( n ) t\sim t(n) tt(n)

t(n)的概率密度h(t)关于t=0对称。当自由度n→∞时,t分布的极限就是标准正态分布,n≥30即可


2.t分布的上α分位点
x = t α ( n ) x=t_α(n) x=tα(n)右侧的面积(概率)为α,则称 t α ( n ) t_α(n) tα(n)为上α分位点

x = t 1 − α ( n ) x=t_{1-α}(n) x=t1α(n)右侧的面积(概率)为1-α,则称 t 1 − α ( n ) t_{1-α}(n) t1α(n)为上1-α分位点

在这里插入图片描述

t分布的概率密度是偶函数
在这里插入图片描述


3.t分布性质
1. E ( t ) = 0 E(t)=0 E(t)=0
2.上α分位点 t 1 − α ( n ) = − t α ( n ) t_{1-α}(n)=-t_α(n) t1α(n)=tα(n)



3.F分布

1.F分布定义
X ∼ χ 2 ( n ) , Y ∼ χ 2 ( m ) X\sim χ^2(n),Y\sim χ^2(m) Xχ2(n),Yχ2(m),且X,Y相互独立,则把随机变量 F = X n Y m F=\dfrac{\dfrac{X}{n}}{\dfrac{Y}{m}} F=mYnX

服从的分布称为自由度为(n,m)的F分布,其中n称为第一自由度,m称为第二自由度,记作 F ∼ F ( n , m ) F\sim F(n,m) FF(n,m)


2.F分布性质
1.若 F ∼ F ( n , m ) F\sim F(n,m) FF(n,m),则 1 F ∼ F ( m , n ) \dfrac{1}{F}\sim F(m,n) F1F(m,n)

2.上α分位点 1 F α ( n , m ) = F 1 − α ( m , n ) \dfrac{1}{F_α(n,m)}=F_{1-α}(m,n) Fα(n,m)1=F1α(m,n)


3.t分布与F分布的关系
若 t ∼ t ( n ) ,则 t 2 ∼ F ( 1 , n ) , 1 t 2 ∼ F ( n , 1 ) 若t\sim t(n),则t^2\sim F(1,n),\dfrac{1}{t^2}\sim F(n,1) tt(n),则t2F(1,n)t21F(n,1)



例题1:03年12.   t分布与F分布的关系
在这里插入图片描述

分析:
X ∼ t ( n ) , X 2 ∼ F ( 1 , n ) , 1 X 2 ∼ F ( n , 1 ) X\sim t(n),X²\sim F(1,n),\dfrac{1}{X²}\sim F(n,1) Xt(n)X2F(1,n)X21F(n,1)

答案:C


例题2:13年8.
在这里插入图片描述

分析:X~t(n), 则 X²=Y~F(1,n)
∴P{Y>c²}=P{X²>c²}=P{X>c}+P{X<-c}=α+α=2α

答案:C


例题3:24李林六(四)8.
在这里插入图片描述

分析:
在这里插入图片描述

答案:C




(四) 抽样分布定理

设总体 X ∼ N ( μ , σ 2 ) X\sim N(μ,σ²) XN(μσ2),样本为 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn,独立同分布于总体

1.单个正态总体

1.样本均值: X ˉ ∼ N ( μ , σ 2 n ) \bar{X}\sim N(μ,\dfrac{σ²}{n}) XˉN(μ,nσ2) X ˉ − μ σ n = ( X ˉ − μ ) n σ ∼ N ( 0 , 1 ) \dfrac{\bar{X}-μ}{\dfrac{σ}{\sqrt{n}}}=\dfrac{(\bar{X}-μ)\sqrt{n}}{σ}\sim N(0,1) n σXˉμ=σ(Xˉμ)n N(0,1)
在这里插入图片描述


2. ∑ i = 1 n ( X i − μ σ ) 2 ∼ χ 2 ( n ) \sum\limits_{i=1}^n(\dfrac{X_i-μ}{σ})^2\sim \chi^2(n) i=1n(σXiμ)2χ2(n)


3. ( n − 1 ) σ 2 S 2 \dfrac{(n-1)}{σ^2}S^2 σ2(n1)S2 = 1 σ 2 ∑ i = 1 n ( X i − X ‾ ) 2 = ∑ i = 1 n ( X i − X ‾ σ ) 2 =\dfrac{1}{σ^2}\sum\limits_{i=1}^n(X_i-\overline{X})^2=\sum\limits_{i=1}^n(\dfrac{X_i-\overline{X}}{σ})^2 =σ21i=1n(XiX)2=i=1n(σXiX)2 ∼ χ 2 ( n − 1 ) \sim \chi^2(n-1) χ2(n1)

E ( S 2 ) = σ 2 , D ( S 2 ) = 2 σ 4 n − 1 E(S²)=σ²,D(S²)=\dfrac{2σ^4}{n-1} E(S2)=σ2D(S2)=n12σ4

S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 S^2=\dfrac{1}{n-1}\sum\limits_{i=1}^n(X_i-\overline{X})^2 S2=n11i=1n(XiX)2


4.① n ( X ˉ − μ ) S ∼ t ( n − 1 ) \dfrac{\sqrt{n}(\bar{X}-μ)}{S}\sim t(n-1) Sn (Xˉμ)t(n1)

在这里插入图片描述


5.样本均值 X ˉ \bar{X} Xˉ与样本方差 S 2 S^2 S2相互独立,即 E ( X ˉ S ) = E ( X ˉ ) E ( S ) E(\bar{X}S)=E(\bar{X})E(S) E(XˉS)=E(Xˉ)E(S)



例题1:17年8.   抽样分布定理
在这里插入图片描述

分析:

答案:B


例题2:05年14.   抽样分布定理、F分布
在这里插入图片描述

分析:
A. n X ‾ = X 1 + X 2 + . . . + X n ∼ N ( 0 , n ) n\overline{X}=X_1+X_2+...+X_n\sim N(0,n) nX=X1+X2+...+XnN(0,n)。A❌

B. n − 1 σ 2 S 2 = σ 2 = 1 ( n − 1 ) S 2 ∼ χ 2 ( n − 1 ) \dfrac{n-1}{σ^2}S^2\xlongequal{σ^2=1}(n-1)S^2\sim \chi^2(n-1) σ2n1S2σ2=1 (n1)S2χ2(n1),不是nS²。B❌

C. n ( X ‾ − μ ) s ∼ t ( n − 1 ) \dfrac{\sqrt{n}(\overline{X}-μ)}{s}\sim t(n-1) sn (Xμ)t(n1)。应改为 n X ‾ S ∼ t ( n − 1 ) \dfrac{\sqrt{n}\overline{X}}{S}\sim t(n-1) Sn Xt(n1)C❌

D: X i ∼ N ( 0 , 1 ) X_i\sim N(0,1) XiN(0,1),即 X i X_i Xi服从标准正态分布
X 1 2 1 ∑ i = 2 n X i 2 n − 1 ∼ F ( 1 , n − 1 ) \dfrac{\frac{X_1^2}{1}}{\frac{\sum\limits_{i=2}^nX_i^2}{n-1}}\sim F(1,n-1) n1i=2nXi21X12F(1,n1),D正确

答案:D


例题3:24李林四(三)9.
在这里插入图片描述

分析:
A.t(1)。分母是绝对值,一般都服从t(1)
B. χ 2 ( 1 ) \chi^2(1) χ2(1)
D.F(1,3)

在这里插入图片描述

答案:C


例题4:24李林四(三)16、23李林四(四)16.
在这里插入图片描述

分析:样本均值 X ˉ \bar{X} Xˉ与样本方差 S 2 S^2 S2相互独立,即 E ( X ˉ S ) = E ( X ˉ ) E ( S ) E(\bar{X}S)=E(\bar{X})E(S) E(XˉS)=E(Xˉ)E(S)

在这里插入图片描述

答案: 1 n 3 + 1 n 2 \dfrac{1}{n^3}+\dfrac{1}{n^2} n31+n21




2.两个正态总体

定理1:
在这里插入图片描述


定理2:
在这里插入图片描述



例题1:23李林六(六)10.
在这里插入图片描述

分析:
X与Y相互独立。则 X ‾ \overline{X} X Y ‾ \overline{Y} Y相互独立,则 X ‾ − Y ‾ ∼ N ( 0 , 2 σ 2 n ) \overline{X}-\overline{Y}\sim N(0,\dfrac{2σ^2}{n}) XYN(0,n2σ2)。AB✔
C. ( n − 1 ) S 2 σ 2 = ∑ i = 1 n ( X i − X ˉ σ ) 2 ∼ χ 2 ( n − 1 ) \dfrac{(n-1)S^2}{σ^2}=\sum\limits_{i=1}^n(\dfrac{X_i-\bar{X}}{σ})^2\simχ^2(n-1) σ2(n1)S2=i=1n(σXiXˉ)2χ2(n1),且卡方分布具有独立可加性,∴C正确
D.应该改为2n-2

答案:D


  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员爱德华

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值