双三相电机的VSD建模综合以及四矢量SVPWM调制

本文详细探讨了PMSM电机的电压和磁链方程,特别是VSD建模中的磁链矩阵,以及四矢量SVPWM算法如何通过解耦和选择合适的电压矢量来减少谐波损耗。作者解释了α-β、x-y子空间的原理,并给出了电压矢量选择和零矢量处理的原则。
摘要由CSDN通过智能技术生成

囫囵吞枣先学着,Simulink仿真慢慢啃 ⍢⃝

基本公式

对于电压方程:

u_s = R_s i_s + \frac{d\psi_s}{dt}

可以理解为,线圈的电阻产生的压降+线圈感应出的各种电压。

感应电压又分为两部分,线圈磁链产生的部分以及由永磁体磁链产生的反电动势。参考PMSM的等效电路图:

线圈电阻很好理解,关键是其中包含的磁链方程需要进一步推导和解释。对于磁链方程:

\psi_s = L_s i_s + \gamma_s \psi_{fd}

第一部分L_s i_s为线圈电流自感及线圈之间互感产生的磁链,因此L_s这个矩阵中会包含定子自感和互感的部分:

但实际上书上会将这部分表示为定子互感和定子漏感矩阵相加的的形式。这一部分有待考究,但总体来说结果都是一样的。我没有完全理解这一部分,因此按下不表。

磁链可以理解为单匝线圈的磁通量乘以匝数。单匝线圈磁通的来源为自身变化的电流。由法拉第电磁感应定律,磁通对时间的微分为电压,在这里,多个磁通合成的磁链对时间的微分也是电压,变成了u_s的一部分。

第二部分\gamma_s \psi_{fd}为永磁体自带的磁链。这里表示为一个磁链系数矩阵,无单位,乘以为永磁体在每一相绕组中产生的磁链幅值。这个系数矩阵跟电机结构有关,主要是考虑到了电机各相之间的相位差,并且将永磁体以N极作参考轴的磁链投影到各自然轴上。对于结构相同的电机,这个系数矩阵都是恒定的。

双三相中的VSD数学建模

在电压和磁链方程中:

u_s = \left[ u_A \quad u_B \quad u_C \quad u_X \quad u_Y \quad u_Z \right]^T;

i_s = \left[ i_A \quad i_B \quad i_C \quad i_X \quad i_Y \quad i_Z \right]^T;

R_s = \text{diag} \left[ R \quad R \quad R \quad R \quad R \quad R \right];

\psi_s = \left[ \psi_A \quad \psi_B \quad \psi_C \quad \psi_X \quad \psi_Y \quad \psi_Z \right]^T;

\gamma_s = \left[ \cos \theta \quad \cos\left(\theta - \frac{2\pi}{3}\right) \quad \cos\left(\theta + \frac{2\pi}{3}\right) \quad \cos\left(\theta - \frac{\pi}{6}\right) \quad \cos\left(\theta - \frac{5\pi}{6}\right) \quad \cos\left(\theta + \frac{\pi}{2}\right) \right]^T;L_s = \left[ \begin{array}{cc} L_{s1s1} & L_{s1s2} \\ L_{s2s1} & L_{s2s2} \end{array} \right] = \left[ \begin{array}{ccc|ccc} M_{AA} & M_{AB} & M_{AC} & M_{AX} & M_{AY} & M_{AZ} \\ M_{AB} & M_{BB} & M_{BC} & M_{BX} & M_{BY} & M_{BZ} \\ M_{AC} & M_{BC} & M_{CC} & M_{CX} & M_{CY} & M_{CZ} \\ \hline M_{AX} & M_{BX} & M_{CX} & M_{XX} & M_{XY} & M_{XZ} \\ M_{AY} & M_{BY} & M_{CY} & M_{XY} & M_{YY} & M_{YZ} \\ M_{AZ} & M_{BZ} & M_{CZ} & M_{XZ} & M_{YZ} & M_{ZZ} \\ \end{array} \right]

基于这个自然坐标系下的数学建模,下面开始进行VSD,即α-β,x-y,零序子空间三个子空间的解耦。电感这个矩阵没太搞明白,需要进一步理解。目前仅处于记结论状态。

采用VSD解耦控制,整体思路是,将六相abcxyz转化为α-β、x-y,零序子空间o1-o2,然后分别对每一相进行控制,其中,如果采用两个三相中性点隔离的双三相,则o1-o2为0,不需要控制,x-y对电机输出转矩和转速没有影响,只不过会导致输出电流波形产生变化。α-β则类似于三相电机的α-β静止两相坐标系。

T_{\alpha \beta} = \frac{1}{3} \left[ \begin{array}{cccccc} 1 & -\frac{1}{2} & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{1}{2} & -1 \\ 1 & -\frac{1}{2} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \frac{1}{2} & -1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ \end{array} \right]

书上这个矩阵是直接给的计算结果,也因此造成了不知道为什么谐波电流会对应到各个空间的疑惑。其实这个矩阵可以变成:

T_{\alpha \beta} = \frac{1}{3} \left[ \begin{array}{cccccc} cos ((12k\pm±1) \times 0^\circ) & cos\left((12k\pm±1) \times120^\circ \right) & cos\left((12k \pm ±1) \times240^\circ \right) & cos\left((12k\pm±1) \times30^\circ \right) & cos\left((12k\pm±1) \times150^\circ \right) & cos\left((12k\pm±1) \times270^\circ \right) \\ sin ((12k\pm±1) \times0^\circ) & sin\left((12k\pm±1) \times120^\circ \right) & sin\left((12k\pm±1) \times240^\circ \right) & sin\left((12k\pm±1) \times 30^\circ \right) & sin\left((12k\pm±1) \times 150^\circ\right) & sin\left((12k\pm±1) \times 270^\circ \right) \\ cos((6k\pm ±1) \times 0^\circ)& cos((6k\pm ±1) \times 120^\circ) & cos((6k\pm ±1) \times 240^\circ) & cos((6k\pm ±1) \times 30^\circ) & cos((6k\pm±1) \times 150^\circ) & cos((6k\pm ±1) \times 270^\circ) \\ sin((6k\pm ±1) \times 0^\circ)& sin((6k\pm ±1) \times 120^\circ) & sin((6k\pm ±1) \times 240^\circ) & sin((6k\pm ±1) \times 30^\circ) & sin((6k\pm ±1) \times 150^\circ) & sin((6k\pm ±1) \times 270^\circ) \\ cos((6k\pm±3) \times 0^\circ)& cos((6k\pm±3) \times 120^\circ) & cos((6k\pm±3) \times 240^\circ) & cos((6k\pm±3) \times 30^\circ) & cos((6k\pm±3) \times 150^\circ) & cos((6k\pm±3) \times 270^\circ) \\ sin((6k\pm±3)\times 0^\circ)& sin((6k\pm±3) \times 120^\circ) & sin((6k\pm±3) \times 240^\circ) & sin((6k\pm±3) \times 30^\circ) & sin((6k\pm±3) \times 150^\circ) & sin((6k\pm±3) \times 270^\circ) \\ \end{array} \right]

注意此处 k=1,3,5…,变换时要记得×三分之一,幅值不变。

其中推导省略,以上矩阵等效于所描述的坐标系经过推导,从自然坐标系变换到DQ等效于:

T_{DQ} = \frac{1}{3} \begin{bmatrix} \cos \theta & \cos\left(\theta - \frac{2\pi}{3}\right) & \cos\left(\theta + \frac{2\pi}{3}\right) & \cos\left(\theta - \frac{\pi}{6}\right) & \cos\left(\theta - \frac{5\pi}{6}\right) & \cos\left(\theta + \frac{\pi}{2}\right) \\ \sin \theta & \sin\left(\theta - \frac{2\pi}{3}\right) & \sin\left(\theta + \frac{2\pi}{3}\right) & \sin\left(\theta - \frac{\pi}{6}\right) & \sin\left(\theta - \frac{5\pi}{6}\right) & \sin\left(\theta + \frac{\pi}{2}\right) \\ cos(6k\pm ±1 \times 0^\circ)& cos(6k\pm±1 \times 120^\circ) & cos(6k\pm±1 \times 240^\circ) & cos(6k\pm±1 \times 30^\circ) & cos(6k\pm±1 \times 150^\circ) & cos(6k\pm±1 \times 270^\circ) \\ sin(6k\pm±1 \times 0^\circ)& sin(6k\pm±1 \times 120^\circ) & sin(6k\pm±1 \times 240^\circ) & sin(6k\pm±1 \times 30^\circ) & sin(6k\pm±1 \times 150^\circ) & sin(6k\pm±1 \times 270^\circ) \\ cos(6k\pm±3 \times 0^\circ)& cos(6k\pm±3 \times 120^\circ) & cos(6k\pm±3 \times 240^\circ) & cos(6k\pm±3 \times 30^\circ) & cos(6k\pm±3 \times 150^\circ) & cos(6k\pm±3 \times 270^\circ) \\ sin(6k\pm±3 \times 0^\circ)& sin(6k\pm±3 \times 120^\circ) & sin(6k\pm±3 \times 240^\circ) & sin(6k\pm±3 \times 30^\circ) & sin(6k\pm±3 \times 150^\circ) & sin(6k\pm±3 \times 270^\circ) \end{bmatrix}

第一、二行即为dq坐标变换,与电角度有关。后两个子空间由于不参与能量变换,因此和电角度不挂钩。由这个公式去乘以自然坐标系下的电压矩阵,可以将6个自然相的电压解耦变成dq轴的恒定电压。基波和12k±1的谐波会落到这个子空间内。从后面加减的数值就可以看出,建立坐标系时就考虑了谐波的映射。

第三、四行为x-y子空间的坐标变换。x-y子空间为6k±1的谐波映射的空间。

第五、六行为零序子空间o1-o2。为6k±3谐波的映射。

基本上VSD建模的核心就是这个变换矩阵。从自然坐标系的六个耦合矢量解耦到三个子空间;其中子空间的建模依据是三相DQ坐标系的拓展,还是尝试将六相分解到只影响转矩的DQ轴上;其他的量被分到不同的子空间以代表不同的谐波,通过控制谐波空间以减少对电机控制的影响。

这个矩阵对后续四矢量SVPWM的调制至关重要。SVPWM的矢量合成就是通过这个矩阵来的。

四矢量SVPWM调制

双三相电机传统的双矢量SVPWM和三相电机的调制类似,仅为简单推广,仅考虑解耦到α-β子空间的部分,并利用这部分进行电压合成和跟踪。因此这里不细表,仅作四矢量调制的笔记。

电压矢量和开关状态可表示为如下。其中α代表30度的相角,其次数代表各相在自然坐标系中的位置。

v_{\alpha\beta} = \frac{1}{3} U_{dc} (s_{A} + s_{B} \alpha^{4} + s_{C} \alpha^{8} + s_{X} \alpha + s_{Y} \alpha^{5} + s_{W} \alpha^{9})

v_{xy} = \frac{1}{3} U_{dc} (s_{A} + s_{B} \alpha^{8} + s_{C} \alpha^{4} + s_{X} \alpha^{5} + s_{Y} \alpha + s_{W} \alpha^{9})

根据六相电压源逆变器的结构,6个开关拥有2^6=64种开关状态。将6个开关状态以(000111)这样的二进制形式表示,并将其化为8进制数,表示某一个开关状态合成的矢量。注意这里的合成是分别指两个子空间内单独合成。四矢量的调制就是指后续将两个子空间同时考虑去合成参考电压矢量。

根据v_{\alpha\beta} v_{xy}这俩公式,我们可以将自然坐标系内合成的矩阵根据对应空间的两行进行分解和绘图。得到α-β、x-y两个子空间内各开关状态对应的矢量图:

得到的是四种幅值的向量,且在α-β空间内最大的向量在x-y空间内最小。并且在α-β空间的Sector角度为30度,而在x-y空间为150度。这些都是根据v_{\alpha\beta} v_{xy}这个公式计算出来的。用T_{\alpha \beta}这个矩阵进行计算也行,结果都是一样的。

四矢量SVPWM算法的核心思想是:由于六相PMSM 的机电能量转换只与α-β子空间上的电流矢量有关,在x-y子空间上的电流只产生谐波损耗,而传统的两矢量六相SVPWM 算法只考虑了对α-β子空间上的电压进行跟踪,没有考虑x-y子空间上的电压合成效果,这将会在x-y子空间上产生不必要的谐波损耗。换而言之,只要有电压矢量分到x-y子空间内,就会产生一定的谐波来影响电机控制。因此,四矢量SVPWM算法的电压矢量选取的标准为在一个开关周期内,在α-β子空间内合成的电压矢量最大,并且在x-y子空间内合成的电压矢量最小。四矢量SVPWM算法就是在两矢量六相SVPWM算法的基础上增加两个基本电压矢量,通过增加的电压矢量来抵消在x-y子空间上形成的电压作用效果。以下这个矩阵能很好的描述这个思想:

\left[ \begin{array}{ccccc} v_{\alpha} & v_{\alpha}^2 & v_{\alpha}^3 & v_{\alpha}^4 & 0 \\ v_{\beta} & v_{\beta}^2 & v_{\beta}^3 & v_{\beta}^4 & 0 \\ v_{x} & v_{x}^2 & v_{x}^3 & v_{x}^4 & 0 \\ v_{y} & v_{y}^2 & v_{y}^3 & v_{y}^4 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ \end{array} \right]\left[ \begin{array}{c} t_1 \\ t_2 \\ t_3 \\ t_4 \\ t_0 \\ \end{array} \right] = \left[ \begin{array}{c} v_{\alpha}^* \\ v_{\beta}^* \\ 0 \\ 0 \\ 1 \\ \end{array} \right] T_s

这里tk是作用在第k个电压矢量上的时间,k = 1,2,3,4;t0 为零矢量作用时间;右边的列向量代表参考电压在α轴和β轴上的投影。这里的次数代表着第几个矢量;下标代表着矢量在哪个轴的投影;v_{\alpha}^*v_{\beta}^*表示参考电压矢量在α-β轴上的投影;0表示0矢量以及在x-y子空间上合成的电压矢量应该为0以保证谐波损耗最小。

四个矢量的选取准则是:单个扇区内,选取α-β子空间内幅值最大的个电矢量,以及这电压矢量在x-y子空间对应为幅值最小的矢量。各矢量作用时间可推导为:

\begin{cases} & T_1 = \frac{\sqrt{3}(\sqrt{3} - 1)}{2 \sqrt{2}U_{dc}} |v^*| T_s \sin \left( \frac{\pi}{6} - \theta \right) \\ & T_2 = \frac{\sqrt{3}(\sqrt{3} - 1)}{2 \sqrt{2}U_{dc}} |v^*| T_s \left[ \sin \theta + \sqrt{3} \sin \left( \frac{\pi}{6} - \theta \right) \right] \\ & T_3 = \frac{\sqrt{3}(\sqrt{3} - 1)}{2 \sqrt{2}U_{dc}} |v^*| T_s \left[ \sqrt{3} \sin \theta + \sin \left( \frac{\pi}{6} - \theta \right) \right] \\ & T_4 = \frac{\sqrt{3}(\sqrt{3} - 1)}{2 \sqrt{2}U_{dc}} |v^*| T_s \sin \theta \\ & T_0 = T_s - \frac{3 + \sqrt{3}}{2 \sqrt{2}U_{dc}} |v^*| T_s \left[ \sin \theta + \sin \left( \frac{\pi}{6} - \theta \right) \right] \end{cases}

遵照电压源逆变器开关次数最少原则添加零矢量并调整作用时间。这部分书上没有给推导,我自己也没有研究明白,因此先记结论:

  • 17
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 六相电是一种特殊的电类型,与传统的三相电相比,它具有更高的功率密度和更低的谐波含量。 六相电的运行原理基于矢量控制技术,其中坐标变换是一个重要的步骤。坐标变换可以将电三相电流和电压转换为一个新的坐标系中的两个独立轴,通常称为d轴和q轴。 在坐标变换中,电三相电流和电压通过正弦余弦变换电路转换为直流电流和交流电流,便于控制和分析。其中,直流电流表示电中的磁场分量,交流电流表示电中的转矩分量。 通过坐标变换,可以实现对电转矩和磁场的独立控制。这为通过调节d轴和q轴上的电流来控制电的转速和输出转矩提供了可能。 与传统的三相电相比,六相电由于拥有更多的电流和电压相位,可以提供更高的转矩和输出功率。此外,六相电还能够减少谐波损耗,提高电的效率和运行稳定性。 总之,六相电通过采用坐标变换技术,可以实现对电转矩和磁场的独立控制,提供更高的功率密度和更低的谐波含量。它是一种高效、稳定的电类型,适用于许多工业和汽车应用。 ### 回答2: 六相电是一种特殊的电类型,它采用六相线圈而不是传统的三相线圈。由于六相电具有更多的线圈,可以产生更好的功率输出和控制性能。 而VSD坐标变换则是一种用于电控制的数学工具,用于将电空间坐标系转换为独立轴和磁场轴。通过VSD坐标变换,我们可以分离电的磁场和转子位置,实现更加精确的控制。 六相电VSD坐标变换可以结合使用,以实现更高性能和更精确的电控制。通过VSD坐标变换,我们可以将六相电的空间坐标转换为独立轴和磁场轴,使得电的控制更加灵活和准确。 六相电与传统的三相电相比,具有更高的功率密度和更低的谐波失真。而VSD坐标变换为电控制提供了更好的数学模型和算法,可以实现更高的精度和稳定性。 总而言之,六相电VSD坐标变换是互相结合的概念。通过将六相电VSD坐标变换相结合,可以实现更高效、更精确的电控制,提升电的性能和控制能力。 ### 回答3: 六相电变频调速系统是一种能够实现多相电的调速和控制的系统。在该系统中,六相电采用了独特的六相供电方式,并且与传统的三相电不同,六相电采用了直接扭矩控制的方法,而不是传统的间接控制方式。 而VSD坐标变换(Voltage Source Drives coordinate transformation)是一种用于控制交流电的方法。它通过将三相电压和电流变换到一个特定的坐标系中,称为αβ坐标系(也称为dq坐标系),来实现对电的控制。 在传统的三相电控制中,我们将三相电压和电流转换到静态αβ坐标系中,通过对这两个变量进行合理的控制,从而实现对电的速度、转矩等参数的控制。但是,由于αβ坐标系中的变量是与旋转角度有关的,因此在动态的过程中,需要不断更新坐标系的旋转角度,以实现精准的控制。 而六相电VSD调速系统则利用了六相电自身的特点,通过直接控制电的两组电流,实现对电的调速和控制。由于六相电的特殊供电方式,可以实现更高的控制精度和更低的转矩波动,尤其在低速和高负载情况下,具有更好的性能。 总之,六相电VSD调速系统和传统的VSD坐标变换方法相比,六相电具有更高的控制精度和更低的转矩波动。通过直接控制电的两组电流,可以实现对电的精确控制,并且适用于多种不同的工况和负载要求。这种技术的应用使得六相电在一些特殊领域的应用中具有更好的优势。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值