特征缩放

我们什么时候用到特征缩放呢?特征缩放的意义又是什么呢?

如果我们有多个特征一起来用于作出某一个决定。有些特征的值可能数值极大。有些特征可能数值较小。这是简单的对特征累加之后用于判断显然是不太合适的。特征缩放的意义便在于此。

特征缩放公式

这里写图片描述

公式的特点是他的值总是在0和1之间。这个公式不足之处在于她比较容易受极值影响,如果极值是异常值的话,情况会十分糟糕。

在sklearn中使用最小最大值缩放器

from sklearn.preprocessing import MinMaxScaler
import numpy

# MinMaxScaler中要求必须是浮点数且必须是numpy.array类型
weights = numpy.array([[115.], [140.], [170.]])
scaler = MinMaxScaler()
rescaled_weight = scaler.fit_transform(weights)
print rescaled_weight

什么样的算法受特征缩放影响

受特征缩放影响的算法有支持向量机K均值算法

他们之所以受特征缩放的影响是因为他们都是根据距离数据的距离进行划分的。支持向量机划分是根据到数据点间的最大距离,K均值的选取和优化也和距离有十分密切的关系。因此,当一点的距离成倍增加时必然会对分类造成影响。

不受特征缩放影响的算法有决策树线性回归

决策树之所以不受特征缩放影响是因为决策树总是横向的分割,即使某一个变量成比例的扩大倍数也没有关系。线性回归之所以不受影响的是因为线性方程的比例关系总是不变的,所以缩放对其没有影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Einstellung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值