2.2.3 动量梯度下降法

动量梯度下降法是一种比标准梯度下降更快的优化算法,它通过计算梯度的指数加权平均数来平滑更新过程,减少在垂直方向上的震荡,提高在水平方向上的学习速度。这种方法有助于在训练神经网络时使用更大的学习率,避免震荡并加速收敛。公式描述了如何使用动量来更新权重,模拟球在碗中因加速度滚动的过程。
摘要由CSDN通过智能技术生成

动量梯度下降法

我们现在介绍一下Momentum梯度下降法,运行速度快于标准的梯度下降法。其基本思想就是计算梯度的指数加权平均数,并利用该梯度来更新权重。

这里写图片描述

如图所示,图中蓝色的代表batch或者mini-batch的梯度下降法,很可能这种梯度下降法的逼近就是以这种形式来逼近的。这种上下波动减慢了梯度下降法的更新速度。使你无法用更大的学习率。如果用更大的学习率可能就如图中紫色线条所示,偏离了学习范围。为了避免波动过大,你要使用一个较小的学习率。

从另外一个角度我们来看,我们希望在纵轴上学的慢一点,而在横轴上学的快一点。Momentum梯度下降法刚好就可以解决这个问题。

像图中下侧所示的公式一样,我们指数加权平均更新dw和db,然后再更新w和b。这样就可以减少梯度下降的幅度。

就像图中部分那些小箭头一样,如果我们平均的话,正负数相互抵消,在纵轴方向平均值就是0了。而在横轴方向,因为所有的微分都指向横轴方向,所以横轴方向的平均值仍然较大。

momentum算法的名称由来如下:

想象你有一个碗,有一个球从碗的边缘滚下去,微分给了这个碗加速度,球因为加速度会越滚越快。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Einstellung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值