模型部分
模型部分都一样,比如我这里使用AlexNet网络来做。我做的是一个二分类任务,所以结尾部分网络有改动。输入图片尺寸是256*256的,所以输出图片尺寸有一点改动。
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D, BatchNormalization
import os
# AlexNet
model = Sequential()
#第一段
model.add(Conv2D(filters=96, kernel_size=(11,11),
strides=(4,4), padding='valid',
input_shape=(256, 256, 3),
activation='relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(3,3),
strides=(2,2),
padding='valid'))
#第二段
model.add(Conv2D(filters=256, kernel_size