使用Haar特征进行人脸识别

本文解析了2001年的经典论文,介绍了如何使用Haar特征和Adaboost算法进行人脸识别。Haar特征通过比较不同区域像素值差异检测边界,Adaboost则用于确定有效特征并构建强分类器。积分图的使用加速了特征计算,使得检测过程更高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇博客对2001年那篇划时代的paper:Rapid Objection Using a Boosted Cascade of Simple Features进行一个简要的解析。这篇文章之后人脸识别的效果有了很大的提升。后来还被应用到了OpenCV之中。

在这里插入图片描述
人脸检测一般来说就是在人脸检测时用一个子窗口在待检测的图片窗口中 不断的移位滑动, 子窗口每到一个位置,就会计算出该区域的特征, 然后用训练好的级联分类器对该特征进行筛选,一旦该特征通过了所有强分类器的筛选, 则判定该区域为人脸。这里用到了Haar特征,那么首先来介绍一下Haar特征。

Haar特征

在这里插入图片描述
Haar特征的基本原理就是认为不同区域的像素值是不同的,这和卷积神经网络的filter十分的类似,是一种边界检测。比如说,对于人的眼睛和非眼睛区域,就十分的不同,以此这个特征来作为一种检测标准。Haar特征的检测方式就是白色区域的像素和减去黑色区域的像素和。

实际上,Haar特征可以有不同的类型,可以有很多的变换。
在这里插入图片描述
以此来进行多尺度的特征检测。

有了Haar特征检测,接下来还会面临一个问题,就是到底什么样的特征可以算是人脸特征呢,多少个特征就可以勾画成人脸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Einstellung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值