这篇博客对2001年那篇划时代的paper:Rapid Objection Using a Boosted Cascade of Simple Features进行一个简要的解析。这篇文章之后人脸识别的效果有了很大的提升。后来还被应用到了OpenCV之中。
人脸检测一般来说就是在人脸检测时用一个子窗口在待检测的图片窗口中 不断的移位滑动, 子窗口每到一个位置,就会计算出该区域的特征, 然后用训练好的级联分类器对该特征进行筛选,一旦该特征通过了所有强分类器的筛选, 则判定该区域为人脸。这里用到了Haar特征,那么首先来介绍一下Haar特征。
Haar特征
Haar特征的基本原理就是认为不同区域的像素值是不同的,这和卷积神经网络的filter十分的类似,是一种边界检测。比如说,对于人的眼睛和非眼睛区域,就十分的不同,以此这个特征来作为一种检测标准。Haar特征的检测方式就是白色区域的像素和减去黑色区域的像素和。
实际上,Haar特征可以有不同的类型,可以有很多的变换。
以此来进行多尺度的特征检测。
有了Haar特征检测,接下来还会面临一个问题,就是到底什么样的特征可以算是人脸特征呢,多少个特征就可以勾画成人脸