图像检测前期基础知识汇总

本文汇总了图像检测所需的基础知识,包括准确率、混淆矩阵、精确率与召回率、F1 Score、平均精度mAP、IoU、边框回归及非极大值抑制(NMS)。这些概念是评估和优化目标检测模型性能的关键。
摘要由CSDN通过智能技术生成

图像检测用到的东西

主要记录下用到的一些基础知识,可能面试之类的会问到。目标检测中首先需要了解得就是bounding box–检测框,一般我们通过滑窗得的方法来得到检测框,一张图片会得到多个包含检测目标的框。围绕目标检测需要了解以下的名词:准确率 (Accuracy),混淆矩阵 (Confusion Matrix),精确率(Precision),召回率(Recall),平均正确率(AP),mean Average Precision(mAP),交除并(IoU),ROC + AUC,非极大值抑制(NMS)

1、准确率

准确率表示预测正确的样本数/总的样本数,一般用来评价模型的整体准确程度,无法全面评价。

2、混淆矩阵

混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。其统计的数值如下:
True positives: 简称为TP,即正样本被正确识别为正样本,飞机的图片被正确的识别成了飞机。
True negatives: 简称为TN,即负样本被正确识别为负样本,大雁的图片没有被识别出来,系统正确地认为它们是大雁。
False Positives: 简称为FP,即负样本被错误识别为正样本,大雁的图片被错误地识别成了飞机。
False negatives: 简称为FN,即正样本被错误识别为负样本,飞机的图片没有被识别出来,系统错误地认为它们是大雁。
在这里插入图片描述
图片展示了混淆矩阵的内容,混淆矩阵是后面我们各种评价指标的基础。

3、precision and recall

precision为精准率,表示在识别出的图片中,被正确识别的比率。
在这里插入图片描述
N表示总的样本数。
recall 表示召回率,是在测试集中所有正样本中,被正确识别为正样本的比率。
在这里插入图片描述

4、F1 Score

在这里插入图片描述
F1-Score指标综合了Precision与Recall的产出的结果。F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。

5、map

mAP:全称为Average Precision,AP值是Precision-Recall曲线下方的面积,mAP是多个类别AP的平均值,这个值介于0到1之间,且越大越好。这个指标是目标检测算法最为重要的一个指标参数。

6、IOU

iou通过设置一个阈值,来计算两个框之间的重叠面积,可以说,当算法给出的框和人工标注的框差异很小时,或者说重叠度很大时,算法产生的boundingbox就很准确。 矩形框A、B的一个重合度IOU计算公式为: IOU=(A∩B)/(A∪B)

7、Bounding box regression

边框回归就是用来调整我们预测的框,当其与真实框的IOU小于某个阈值时,就需要调整预测框的位置,通过改变位置坐标来实现,如下图所示,红色的框代表预测狂,绿色的框则代表真实样本的框,二者的IOU明显小于0.5,说明预测的框位置不准确,需要调整,如何调整呢?
在这里插入图片描述
这里的调整就是我们的边框回归了,一般我们描述一个框的时候用(x,y,w,h)来表示,x,y代表窗口的中心点坐标,w,h则代表框的宽高,这样就可以完整的描述一个框的具体位置。我们在进行调整时,也是对这几个值进行修改。在下图中红色代表初次预测的box,绿色代表目标的真实位置,通过回归操作让红色框到达蓝色框的位置,这就是边框回归的过程。
在这里插入图片描述
将上述过程用公式进行表示的话,相当于给定 ( p x , p y , p w , p h ) (p_{x},p_{y},p_{w},p_{h}) (px,py,pw,ph),寻找一种映射 f f f使得 f ( p x , p y , p w , p h ) = ( G x ^ , G y ^ , G w ^ , G h ^ ) f(p_{x},p_{y},p_{w},p_{h})=(\widehat{G_{x}},\widehat{G_{y}},\widehat{G_{w}},\widehat{G_{h}}) f(px,p<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值