- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
一、逻辑回归定义
简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。
逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。逻辑回归假设因变量 y 服从伯努利分布,而线性回归假设因变量 y 服从高斯分布。
二、代码实现
我的环境:
- 语言环境:Python 3.10
- 编译器:Jupyter NoteBook
1. 数据读取
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
dataset = pd.read_csv('../data/Social_Network_Ads.csv')
dataset
输出:
X = dataset.iloc[ : , [2,3]].values
Y = dataset.iloc[ : ,4].values
X.shape, Y.shape
输出:
((400, 2), (400,))
2. 数据划分
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y,
test_size=0.25,
random_state=0)
X_train.shape,Y_train.shape
输出:
((300, 2), (300,))
3. 模型准备
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression()
classifier.fit(X_train, Y_train)
4. 模型预测
Y_pred = classifier.predict(X_test)
5. 预测结果评估
from matplotlib.colors import ListedColormap
X_set, y_set = X_train,Y_train
x = np.arange(start=X_set[:,0].min()-1,
stop=X_set[:, 0].max()+1,
step=0.01)
y = np.arange(start=X_set[:,1].min()-1,
stop=X_set[:,1].max()+1,
step=100)
x.shape, y.shape
输出:
((4400,), (1351,))
#把x,y绑定为网格的形式
X1,X2 =np. meshgrid(x,y)
plt.contourf(X1, X2,
classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75,
cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(),X1.max())
plt.ylim(X2.min(),X2.max())
for i,j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set==j,0],
X_set[y_set==j,1],
color = ListedColormap(['red', 'green'])(i),
label=j)
plt.title('LOGISTIC(Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
输出:
测试集可视化:
三、总结
可通过logistic调整参数来观察输出。