【机器学习练习】

一、逻辑回归定义

简单来说, 逻辑回归(Logistic Regression)是一种用于解决二分类(0 or 1)问题的机器学习方法,用于估计某种事物的可能性。比如某用户购买某商品的可能性,某病人患有某种疾病的可能性,以及某广告被用户点击的可能性等。

逻辑回归(Logistic Regression)与线性回归(Linear Regression)都是一种广义线性模型(generalized linear model)。逻辑回归假设因变量 y 服从伯努利分布,而线性回归假设因变量 y 服从高斯分布。

二、代码实现

我的环境:

  • 语言环境:Python 3.10
  • 编译器:Jupyter NoteBook

1. 数据读取

import numpy  as np
import pandas as pd
import matplotlib.pyplot as plt
dataset = pd.read_csv('../data/Social_Network_Ads.csv')
dataset

输出:
在这里插入图片描述

X = dataset.iloc[ : , [2,3]].values
Y = dataset.iloc[ : ,4].values

X.shape, Y.shape

输出:
((400, 2), (400,))

2. 数据划分

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, 
                                                    test_size=0.25, 
                                                    random_state=0)

X_train.shape,Y_train.shape

输出:
((300, 2), (300,))

3. 模型准备

from sklearn.linear_model import LogisticRegression

classifier = LogisticRegression()
classifier.fit(X_train, Y_train)

4. 模型预测

Y_pred = classifier.predict(X_test)

5. 预测结果评估

from matplotlib.colors import ListedColormap

X_set, y_set = X_train,Y_train

x = np.arange(start=X_set[:,0].min()-1, 
              stop=X_set[:, 0].max()+1, 
              step=0.01)

y = np.arange(start=X_set[:,1].min()-1, 
              stop=X_set[:,1].max()+1, 
              step=100)

x.shape, y.shape

输出:
((4400,), (1351,))

#把x,y绑定为网格的形式
X1,X2 =np. meshgrid(x,y)

plt.contourf(X1, X2, 
             classifier.predict(np.array([X1.ravel(),X2.ravel()]).T).reshape(X1.shape),
             alpha = 0.75, 
             cmap = ListedColormap(('red', 'green')))

plt.xlim(X1.min(),X1.max())
plt.ylim(X2.min(),X2.max())

for i,j in enumerate(np.unique(y_set)):
    plt.scatter(X_set[y_set==j,0],
                X_set[y_set==j,1],
                color = ListedColormap(['red', 'green'])(i), 
                label=j)

plt.title('LOGISTIC(Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

输出:
在这里插入图片描述
测试集可视化:
在这里插入图片描述

三、总结

可通过logistic调整参数来观察输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值