图论与网络流理论 3. 匹配理论 1:匹配、最大匹配、完美匹配

匹配与最大匹配

匹配

G G G是一个图,由 G G G中不相邻的边组成的集合 M M M称为 G G G的一个匹配(matching)。对于匹配 M M M中的每一条边 e = u v e=uv e=uv,称 u u u v v v被匹配 M M M所匹配,是 M M M饱和的

  1. 更为确切地说, M M M是图 G G G中的一个匹配是指: M ⊂ E ( G ) M\subset E(G) ME(G),且对 ∀ e i , e j ∈ M \forall e_i,e_j\in M ei,ejM,若 e i e_i ei e j e_j ej不相同,则两条边不相邻
  2. 图中的每一个顶点,要么未被 M M M饱和,要么仅被 M M M中的一条边饱和
  3. 一个图的匹配一般不唯一。特别地, G G G中的每一条边都构成 G G G的一个匹配
  4. 平凡图也有匹配(考虑边集为 ∅ \varnothing

最大匹配

G G G中含边数最多的匹配

  1. ∣ M ∣ |M| M表示匹配 M M M所含有的边数,则最大匹配可以更加确切地表述为: M M M G G G中的一个匹配,而且不存在匹配 M ′ M' M,使得 ∣ M ′ ∣ > ∣ M ∣ |M'|>|M| M>M
  2. 如果 G G G中的每一个顶点都是 M M M饱和的,则 M M M G G G的完美匹配
  3. 任何图的完美匹配都是最大匹配

交错路、增广路

边在 M M M E ( G ) − M E(G)-M E(G)M中交替出现的路成为交错路。如果交错路的起点和终点都是 M M M非饱和的,则称其为一条 M M M增广路

最大匹配的条件

M M M是最大匹配的充分必要条件是: G G G中不存在 M M M增广路

证明

必要性:

如果 M M M是最大匹配,还有一条增广路 P P P,就可以把 P P P上所有不属于 M M M的边构成集合 M ′ M' M,显然 M ′ M' M也是 G G G中的一个匹配(边与边之间不相邻),而且比 M M M多一条边。矛盾。


充分性:

如果 G G G中不存在 M M M增广路,设 M M M不是最大匹配,另外存在一个匹配 M ′ M' M,使得 ∣ M ′ ∣ > ∣ M ∣ |M'|>|M| M>M,令:

H = G [ M ⊕ M ′ ] H=G[M\oplus M'] H=G[MM]

其中 M ⊕ M ′ = M ∪ M ′ − M ∩ M ′ M\oplus M'=M\cup M'-M\cap M' MM=MMMM,成为对称差,即在 M M M M ′ M' M中却又不同时在两者之中。 H H H即边集合 M ⊕ M ′ M\oplus M' MM导出的子图。

H H H中的顶点的度,要么是 1 1 1要么是 2 2 2(可能与 M M M或者 M ′ M' M中的一个或者两个关联),所以 H H H的每一个连通分支,一定是 M M M的边和 M ′ M' M的边交替出现的:

  • 一个偶长度圈
  • 一条路

由于 M M M M ′ M' M边的数量不一样且有 ∣ M ′ ∣ > ∣ M ∣ |M'|>|M| M>M,因此不可能全是偶长度圈,而且也一定存在一条路,这条路两端都是 M ′ M' M中的边。而这条路就是一条 M M M增广路。矛盾。

在这里插入图片描述

完美匹配

奇分支

G G G中含有奇数个顶点的连通分支称为 G G G的奇分支。 G G G的奇分支的个数使用 o ( G ) o(G) o(G)表示

完美匹配的条件

(Tutte定理)图 G G G有完美匹配的充分必要条件是:对 ∀ S ⊂ V ( G ) \forall S\subset V(G) SV(G) o ( G − S ) ≤ ∣ S ∣ o(G-S)\le |S| o(GS)S(其中 ∣ S ∣ |S| S S S S所含顶点的个数)

证明

必要性:

设图 G G G有完美匹配 M M M,对于 ∀ S ⊂ G \forall S\subset G SG,如果 G − S G-S GS没有奇分支,则结论显然成立。否则设 G 1 , … , G k G_1,\dots ,G_k G1,,Gk G − S G-S GS的所有奇分支。

由于 M M M是完美匹配,所以对于每一个奇分支,其中所有的顶点在 G G G中都是饱和的。使其饱和的边可能在奇分支内部,也可能与 S S S中的顶点连接。由于一个奇分支如果两两内部配对,最后至少还会剩下一个顶点必须要和 S S S中的顶点(设为 v i v_i vi)通过 M M M中的边饱和。又因为 S S S中的顶点在 M M M下只能与一个顶点进行匹配,最多也就是 ∣ S ∣ |S| S个,因此就有 o ( G − S ) = k = ∣ { v 1 … v k } ∣ ≤ ∣ S ∣ o(G-S)=k=|\{v_1\dots v_k\}|\le |S| o(GS)=k={v1vk}S

在这里插入图片描述


充分性:

假设图 G G G满足:对于 ∀ S ⊂ V ( G ) \forall S\subset V(G) SV(G) o ( G − S ) ≤ ∣ S ∣ o(G-S)\le |S| o(GS)S,但是 G G G中不存在完美匹配。

首先取 S = ∅ S=\varnothing S=,则 o ( G ) = 0 o(G)=0 o(G)=0,所以显然 V ( G ) V(G) V(G)是偶数。

之后给 G G G添加边,获得一个边尽可能多的没有完全匹配的图 G ∗ G^* G(称为边极大图)。由于 G G G G ∗ G^* G的生成子图,所以 ∀ S ⊂ V ( G ) \forall S\subset V(G) SV(G) G − S G-S GS G ∗ − S G^*-S GS的生成子图。所以有:
o ( G ∗ − S ) ≤ o ( G − S ) ≤ ∣ S ∣              ( ∗ ) o(G^*-S)\le o(G-S)\le |S|~~~~~~~~~~~~(*) o(GS)o(GS)S            ()

定义:
U = { u ∣ u ∈ V ( G ∗ ) , d G ∗ ( u ) = v − 1 } U=\{u\mid u\in V(G^*),d_{G^*}(u)=v-1\} U={uuV(G),dG(u)=v1}

如果 U = V ( G ∗ ) U=V(G^*) U=V(G),那么 G ∗ G^* G就是偶数阶完全图,而完全图显然有完美匹配,矛盾。因此有 U ≠ V ( G ∗ ) U\neq V(G^*) U=V(G)。可以证明,此时 G ∗ − U G^*-U GU的每一个连图分支都是完全图(作为命题 A \mathrm A A后面另证)

根据 ( ∗ ) (*) ()式,有 o ( G ∗ − U ) ≤ ∣ U ∣ o(G^*-U)\le |U| o(GU)U。可以构造出一个 G ∗ G^* G的完美匹配如下:

  1. G ∗ − U G^*-U GU中的每一个奇分支的一个顶点和 U U U的一个顶点匹配
  2. U U U中剩余的顶点以及 G ∗ − U G^*-U GU中各个分支剩余的顶点(奇分支中剩余的顶点和偶分支的所有顶点)在本分支内进行配对

在这里插入图片描述

由于 U U U(由于 U U U的定义)和各个分支(根据命题 A \mathrm A A)都是完全图,因此一定可以实现这样的构造。

由此证明出矛盾。


定理 A \mathrm A A的证明:

如果 G ∗ − U G^*-U GU中某一个连通分支 G i G_i Gi不是完全图,则显然有 ∣ V ( G i ) ∣ ≥ 3 |V(G_i)|\ge 3 V(Gi)3,且必然存在 x , y , z ∈ V ( G i ) x,y,z\in V(G_i) x,y,zV(Gi),使得 x y , y z ∈ E ( G i ) xy,yz\in E(G_i) xy,yzE(Gi),且 z x ∉ E ( G i ) zx\not \in E(G_i) zxE(Gi)

在这里插入图片描述

又由于 y ∉ U y\not \in U yU,也就是 d G ∗ ( y ) < k − 1 d_{G^*}(y)<k-1 dG(y)<k1,也就是在 G ∗ G^* G中一定存在一个点 w ∈ V ( G ∗ − U ) w\in V(G^*-U) wV(GU) y y y不相邻,即 y w ∉ E ( G ∗ ) yw\not \in E(G^*) ywE(G)

现在我们就有了两个不在 E ( G ∗ ) E(G^*) E(G)中的边: z x zx zx y w yw yw。由于 G ∗ G^* G是极大的没有完美匹配的图,所以 G ∗ + x z G^*+xz G+xz G ∗ + y w G^*+yw G+yw都存在完美匹配。将这两个完美匹配分别记为 M 1 M_1 M1(一定含有 x z xz xz)和 M 2 M_2 M2(一定含有 y w yw yw)。

定义 H H H G ∗ ∪ { x z , y w } G^*\cup \{xz,yw\} G{xz,yw}中由对称差 M 1 ⊕ M 2 M_1\oplus M_2 M1M2导出的子图,由于两个完美匹配边的数量相等,因此 H H H的所有连通分支都是偶长度圈

考虑两种情况:

  1. z x zx zx y w yw yw在同一个连通分支(也就是同一个偶圈中),不妨设 x , y , w , z x,y,w,z x,y,w,z按照顺时针顺序在这个偶长度圈之中出现。考虑这样的一种构造方法:
    • M 1 M_1 M1 y w … z yw\dots z ywz段中的边集记为 M 1 ′ M_1' M1
    • M 2 M_2 M2 y w … z yw\dots z ywz段中的边集记为 M 2 ′ M_2' M2
    • M 1 ′ ∪ { y z } ∪ ( M 2 − M 2 ′ ) M_1'\cup\{yz\}\cup(M_2-M_2') M1{yz}(M2M2)就以是个不含 z x zx zx y w yw yw的,满足 G ∗ G^* G构造方法的一个完美匹配。与 G ∗ G^* G的性质矛盾。( M 1 ′ M_1' M1不含 y w yw yw,使得除了 y y y z z z以外的所有 y w … z yw\dots z ywz中的点都得到了饱和; { y z } \{yz\} {yz}使得 y y y z z z得到饱和; ( M 2 − M 2 ′ ) (M_2-M_2') (M2M2)使得除了 y w … z yw\dots z ywz之外的所有点都得到饱和)

在这里插入图片描述

  1. z x zx zx y w yw yw不在同一个连通分支中,设 y w yw yw在连通分支 C C C上,那么 M 1 M_1 M1 C C C上的边(不含 y w yw yw使得 C C C中的所有顶点饱和)和 M 2 M_2 M2不在 C C C上的边(不含 z x zx zx使得所有 C C C以外的定点得到了饱和)构成了 G ∗ G^* G的一个完美匹配,矛盾。

在这里插入图片描述

因此 G ∗ − U G^*-U GU的所有连通分支都是完全图。

推论

推论一

偶数阶 ( k − 1 ) (k-1) (k1)边连通的 k k k正则图有完美匹配

证明

k = 1 k=1 k=1时,结论显然

假定 k ≤ 2 k\le 2 k2。任取 S ⊂ V ( G ) S\subset V(G) SV(G),若有 S = ∅ S=\varnothing S=,则 G − S = G G-S=G GS=G,无奇分支, o ( G − S ) = ∣ S ∣ = 0 o(G-S)=|S|=0 o(GS)=S=0,满足Tutte定理。

否则,定义:
v i = ∣ V ( G i ) ∣ m i = ∣ { e ∣ e 是 G i 和 S 之 间 的 连 边 } ∣ v_i=|V(G_i)|\\ m_i=|\{e\mid e 是G_i和S之间的连边\}| vi=V(Gi)mi={eeGiS}

由于 κ ′ ( G ) ≥ k − 1 \kappa'(G)\ge k-1 κ(G)k1(根据边连通度为 k − 1 k-1 k1的条件),所以一定有 m i ≥ k − 1 m_i\ge k-1 mik1。如下图所示:

在这里插入图片描述

如果存在一个 i i i,使得 m i = k − 1 m_i=k-1 mi=k1。由于 G G G是正则图,因此有 ∑ v ∈ V ( G i ) d G ( v ) = k v i \sum_{v\in V(G_i)}d_{G}(v)=kv_i vV(Gi)dG(v)=kvi,从而有:

m i = ∑ v ∈ V ( G i ) d G ( v ) − ∑ v ∈ V ( G i ) d G i ( v ) = k v i − 2 ε ( G i ) m_i=\sum_{v\in V(G_i)}d_{G}(v)-\sum_{v\in V(G_i)}d_{G_i}(v)=kv_i-2\varepsilon (G_i) mi=vV(Gi)dG(v)vV(Gi)dGi(v)=kvi2ε(Gi)

这个式子的意思就是, G i G_i Gi连到 S S S的边的数量,就是 G G G中所有顶点度之和减去 G i G_i Gi中所有顶点度之和。其中前者很容易求出(因为是正则图),后面的其实并不需要我们求出具体值,只说明是偶数就可以(边的数量的两倍)

因此就有:

2 ε ( G i ) = k v i − m i = k v i − ( k − 1 ) = k ( v i − 1 ) + 1 2\varepsilon(G_i)=kv_i-m_i=kv_i-(k-1)=k(v_i-1)+1 2ε(Gi)=kvimi=kvi(k1)=k(vi1)+1

由于 v i − 1 v_i-1 vi1是偶数(因为 G i G_i Gi是奇分支)因此当时的右边就是奇数;而等式左边一定是偶数,因此矛盾。

上面的矛盾说明了, m i ≥ k m_i\ge k mik。因此就有 ∑ i = 1 n m i ≥ k n \sum^n_{i=1}m_i\ge kn i=1nmikn。又由正则性可知, ∑ v ∈ S d G ( v ) = k ∣ S ∣ \sum_{v\in S}d_{G}(v)=k|S| vSdG(v)=kS,因此就有:

o ( G − S ) = n ≤ 1 k ⋅ ∑ i = 1 n m i ≤ 1 k ∑ u ∈ S d G ( u ) = ∣ S ∣ o(G-S)=n\le \frac 1k \cdot \sum^n_{i=1}m_i\le \frac 1k \sum_{u\in S}d_{G}(u)=|S| o(GS)=nk1i=1nmik1uSdG(u)=S

对于 1 k ⋅ ∑ i = 1 n m i ≤ 1 k ∑ u ∈ S d G ( u ) \frac 1k \cdot \sum^n_{i=1}m_i\le \frac 1k \sum_{u\in S}d_{G}(u) k1i=1nmik1uSdG(u)

  • 1 k ⋅ ∑ i = 1 n m i \frac 1k \cdot \sum^n_{i=1}m_i k1i=1nmi S S S与所有奇分支所连接的边的数量
  • 1 k ∑ u ∈ S d G ( u ) \frac 1k \sum_{u\in S}d_{G}(u) k1uSdG(u) S S S与所有奇偶分支、以及 S S S内部相互连接的所有边的数量。

因此显然两者之间有不等关系。

根据Tutte定理就可以得出结论。

推论二

2 2 2-边连通(无割边)的 3 3 3-正则图由完美匹配

由于每个顶点的度都是 3 3 3,而所有顶点的度之和需要是偶数,因此顶点数量就是偶数。根据上面的推论代入之后显然。

推论三

偶数阶完全图 K 2 n K_{2n} K2n 2 n − 1 2n-1 2n1个边不重的完美匹配

K 2 n K_{2n} K2n的顶点集为 { v 1 , … , v 2 n } \{v_1,\dots ,v_{2n}\} {v1,,v2n},任取 2 n − 1 2n-1 2n1个顶点(不妨设为 { v 1 , … v 2 n − 1 } \{v_1,\dots v_{2n-1}\} {v1,v2n1}),构造一个正多边形,并将剩下的那一个顶点(不妨设为 v 2 n v_{2n} v2n)放在正多边形的中心位置。考虑每一个多边形顶点 v i v_i vi中心点 v 2 n v_{2n} v2n相连的直线,以及与其垂直的直线,记为 M i M_i Mi。显然每一个 M i M_i Mi都是原图的匹配,而且每一个 M i M_i Mi之间没有任何一条重边。

在这里插入图片描述

  • 16
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图论网络理论是计算机科学领域中的两个重要的理论分支。图论是研究研究图结构以及与其相关的性质和算法的学科。图由节点和边组成,节点表示对象,边表示对象之间的联系或关系。图论主要关注的问题包括图的连通性、路径问题、最短路径等。在计算机网络、社交网络等领域中广泛应用。 而网络理论是研究物质或信息在网络中从源节点到汇节点传递的问题。这个问题可以转化为在图中找出满足一定约束条件下的最大或最小割等问题。网络理论可以应用于很多领域,如计算机网络中的路由优化、货物配送中的路径选择、电力网络的负载均衡等。 对于图论网络理论来说,一些经典的算法非常重要且有实际应用。比如最短路径算法(如Dijkstra算法和Bellman-Ford算法)、最大最小割算法(如Ford-Fulkerson算法和Edmonds-Karp算法)等。这些算法能够帮助我们解决在图和网络中的各种问题。 对于图论网络理论的学习,可以通过阅读相关的资料,如图论网络理论的授课教材、论文以及相应的pdf文档。这些资料可以帮助我们了解关键的概念、算法和应用领域。通过理论学习,我们可以将其应用于实际问题中,并设计出高效的解决方案。 总之,图论网络理论是计算机科学领域中重要的理论分支。它们的理论基础和算法应用广泛,能够帮助我们解决各种与图和网络相关的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值