图论——最大匹配

图论——最大匹配

  • 匹配:定义一个图 G = ( E , V ) G = (E,V) G=(E,V) ,匹配是指边集的一个子集 V ′ ⊆ V V' \subseteq V VV。在 V ′ V' V中,没有任意一个节点 u u u,使得 u u u a a a边相连又与 b b b边相连( a ≠ b a \neq b a=b)。
  • 极大匹配:在一个匹配 M M M中,再也不能添加一个边 a a a使得 M ∪ { a } M \cup \{a\} M{a}也是一个 G G G的匹配。
  • 最大匹配:在所有极大匹配中,边集数量最大的那个就是最大匹配,最大匹配可能不唯一。

树的最大匹配

P1623

使用树形DP的方式解决即可。

struct Wint : vector<int>
{
    Wint() { clear(); }
    Wint(int x)
    {
        clear();
        while (x)
            push_back(x % 10), x /= 10;
    }
    void operator~()
    {
        for (int i = 0; i + 1 < size(); i++)
            (*this)[i + 1] += (*this)[i] / 10, (*this)[i] %= 10;
        while (!empty() && back() > 9)
        {
            int tmp = back() / 10;
            back() %= 10;
            push_back(tmp);
        }
        while (!empty() && !back())
            pop_back();
    }
    void operator+=(const Wint &x)
    {
        //		print(),putchar('+'),x.print();
        if (size() < x.size())
            resize(x.size());
        for (int i = 0; i < x.size(); i++)
            (*this)[i] += x[i];
        ~*this;
        //		putchar('='),print(),putchar('\n');
    }
    friend Wint operator*(const Wint &x, const Wint &y)
    {
        //		x.print(),putchar('*'),y.print();
        Wint z;
        if (!x.size() || !y.size())
            return z;
        z.resize(x.size() + y.size() - 1);
        for (int i = 0; i < x.size(); i++)
            for (int j = 0; j < y.size(); j++)
                z[i + j] += x[i] * y[j];
        ~z;
        //		putchar('='),z.print(),putchar('\n');
        return z;
    }
    void print() const
    {
        if (empty())
        {
            putchar('0');
            return;
        }
        for (int i = size() - 1; i >= 0; i--)
            putchar('0' + (*this)[i]);
    }
};

struct Edge
{
    short to;
    short nxt;
} e[2005];
short head[1005];
short tot;

void add(int u, int v)
{
    tot++;
    e[tot].to = v;
    e[tot].nxt = head[u];
    head[u] = tot;
}

short dp[1005][2]; // 0: 节点不与子节点匹配的最大匹配数 1: 节点与子节点匹配的最大匹配数
Wint num[1005][2][510]; // 0: 节点不与子节点匹配的最大匹配数的方案数 1: 节点与子节点匹配的最大匹配数的方案数

void tdp(int u, int r)
{
    short sum = 0;
    for (int ne = head[u]; ne; ne = e[ne].nxt)
    {
        int to = e[ne].to;
        if (to == r)
            continue;
        tdp(to, u);
        dp[u][0] += max(dp[to][0], dp[to][1]);
        sum += max(dp[to][0], dp[to][1]);
    }

    for (int ne = head[u]; ne; ne = e[ne].nxt)
    {
        int to = e[ne].to;
        if (to == r)
            continue;
        dp[u][1] = max(dp[u][1], short(sum - max(dp[to][0], dp[to][1]) + dp[to][0] + 1));
    }
}

void ndp(int u, int r)
{
    num[u][0][0] = 1;
    for (int ne = head[u]; ne; ne = e[ne].nxt)
    {
        int to = e[ne].to;
        if (to == r)
            continue;
        ndp(to, u);
        for (int i = 509; i > 0; i--)
        {
            // 更新不与子节点匹配的方案
            num[u][1][i] +=
                (i - dp[to][1] >= 0 ? (dp[to][1] != 0 ? num[to][1][dp[to][1]] : 0) * num[u][1][i - dp[to][1]] : 0);
            num[u][1][i] +=
                (i - dp[to][0] >= 0 ? (dp[to][0] != 0 ? num[to][0][dp[to][0]] : 0) * num[u][1][i - dp[to][0]] : 0);
            
            // 更新与子节点匹配的方案
            num[u][1][i] +=
                (i - dp[to][0] - 1 >= 0 ? num[to][0][dp[to][0]] * num[u][0][i - dp[to][0] - 1] : 0);

            num[u][0][i] +=
                (i - dp[to][1] >= 0 ? num[to][1][dp[to][1]] * num[u][0][i - dp[to][1]] : 0);
            num[u][0][i] +=
                (i - dp[to][0] >= 0 ? (dp[to][0] != 0 ? num[to][0][dp[to][0]] : 0) * num[u][0][i - dp[to][0]] : 0);
        }
    }
}

void solve()
{
    int n;
    cin >> n;
    for (int i = 1; i <= n; i++)
    {
        int r, c;
        cin >> r >> c;
        for (int j = 0; j < c; j++)
        {
            int s;
            cin >> s;
            add(r, s);
            add(s, r);
        }
    }
    tdp(1, 1);
    ndp(1, 1);
    ll mx = max(dp[1][0], dp[1][1]);
    num[1][0][mx] += num[1][1][mx];

    cout << mx << endl;
    num[1][0][mx].print();
}

int main()
{
    FR;
    ios::sync_with_stdio(false);
    cin.tie(0);
    solve();
    return 0;
}
  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
OpenSAL1.1 包含了算法导论中所有数据结构和算法以及其他内容,本资源为该算法库的静态链接库 内容如下(*号表示1.1版本新增内容): 数据结构:一般堆、二项堆、斐波那契堆、红黑树、通用散列(采用全域散列和完全散列技术)、不相交集合、任意维数组、高维对称数组。 图论算法(兼容有向,无向):广度和深度优先遍历、确定是否存在回路、拓扑排序、强连通分支、欧拉环(欧拉路径)、最小生成树(Kruskal、Prim)、单源最短路径(3种)、每对顶点间最短路径(2种)、最大流(2种)等等。 代数算法:霍纳法则计算多项式和、矩阵乘法(2种)、方阵的LUP分解、解线性方程组(2种)、矩阵求逆(2种)、求伪逆矩阵(2种)、解正态方程组(2种)、最小二乘估计(2种)、多元最小二乘估计*、快速傅里叶变换、快速傅里叶逆变换、多维快速傅里叶变换、多维快速傅里叶逆变换、快速向量求卷积(单变量多项式乘积)、快速张量求卷积(多变量多项式乘积)、多项式除法*、快速方幂和算法。 序列算法:最长公共子序列、KMP序列匹配*、键值分离排序。 数论算法:大数类(兼容浮点数、整数、与内置类型兼容运算)*、RSA加解密系统*、解同余方程*、孙子定理解同余方程组*、Miller_Rabin素数测试(产生大质数)*、随机数(实数、大数)*、欧几里得算法*。 计算几何算法:确定任意一对线段是否相交*、凸包*、最近点对*。 运筹学:线性规划(单纯形法)*、分配问题*、最优二度子*、多01背包问题*

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值