题目描述
众所周知,TT 有一只魔法猫。
今天他在 B 站上开启了一次旅行直播,记录他与魔法猫在喵星旅游时的奇遇。 TT
从家里出发,准备乘坐猫猫快线前往喵星机场。猫猫快线分为经济线和商业线两种,它们的速度与价钱都不同。当然啦,商业线要比经济线贵,TT
平常只能坐经济线,但是今天 TT 的魔法猫变出了一张商业线车票,可以坐一站商业线。假设 TT 换乘的时间忽略不计,请你帮 TT
找到一条去喵星机场最快的线路,不然就要误机了!
输入输出
Input
输入包含多组数据。每组数据第一行为 3 个整数 N, S 和 E (2 ≤ N ≤ 500, 1 ≤ S, E ≤ 100),即猫猫快线中的车站总数,起点和终点(即喵星机场所在站)编号。
下一行包含一个整数 M (1 ≤ M ≤ 1000),即经济线的路段条数
接下来有 M 行,每行 3 个整数 X, Y, Z (1 ≤ X, Y ≤ N, 1 ≤ Z ≤ 100),表示 TT 可以乘坐经济线在车站 X 和车站 Y 之间往返,其中单程需要 Z 分钟。
下一行为商业线的路段条数 K (1 ≤ K ≤ 1000)。
接下来 K 行是商业线路段的描述,格式同经济线。
所有路段都是双向的,但有可能必须使用商业车票才能到达机场。保证最优解唯一。
Output
对于每组数据,输出3行。第一行按访问顺序给出 TT 经过的各个车站(包括起点和终点),第二行是 TT 换乘商业线的车站编号(如果没有使用商业线车票,输出"Ticket Not Used",不含引号),第三行是 TT 前往喵星机场花费的总时间。
本题不忽略多余的空格和制表符,且每一组答案间要输出一个换行
Sample Input
4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3
Sample Output
1 2 4
2
5
思路分析
题目给定了起点和终点,且边权非负,因此可用Dijkstra解决。
关键:松弛操作。将已松弛的点放入最小堆中,每次从最小堆中取出距离最短的点,一旦取出,该点的距离达到最小。
因为题目要求商业线最多乘坐一次,可以枚举每一条商业线,计算起点到u的最短路以及v到终点的最短路,加上该商业线所花费的时间。最后,再与不走商业线的答案取min。
注意
1.无向图中边添加两遍
2.最大堆丢负数变为最小堆
代码
#include<iostream>
#include<queue>
#include<string.h>
#include<vector>
using namespace std;
const int maxn=2005;
const int inf=1e9;
int vis[maxn],head[maxn],sta1[maxn],sta2[maxn];
int pre1[maxn],pre2[maxn],dis1[maxn],dis2[maxn];
//pre1[]和pre2[]分别用来存储以起点和终点为源点的最短路的路径
struct Edge{
int to,w,nxt;
}edge[maxn];
int n,s,e,m,k,tot,ans=inf;
priority_queue<pair<int,int> > q;
vector<int> sta;
void dijkstra(int s,int *dis,int *pre)
{
while(!q.empty()) q.pop();
for(int i=0;i<=n;i++)
{
dis[i]=inf;
vis[i]=0;
}
q.push(make_pair(0,s));
dis[s]=0;
while(!q.empty())
{
int x=q.top().second;
q.pop();
if(vis[x]) continue;
vis[x]=1;
for(int i=head[x];i;i=edge[i].nxt)
{
int y=edge[i].to,
w=edge[i].w;
if(dis[y]>dis[x]+w)
{//松弛操作
dis[y]=dis[x]+w;
pre[y]=x;//记录前一个点
q.push(make_pair(-dis[y],y));
}
}
}
}
void addEdge(int x,int y,int z)
{
edge[++tot].to=y;
edge[tot].w=z;
edge[tot].nxt=head[x];
head[x]=tot;
}
void init()
{//初始化
tot=0;
ans=inf;
for(int i=0;i<=n;i++)
head[i]=-1;
// memset(sta,0,sizeof(sta));
sta.clear();
memset(pre1,0,sizeof(pre1));
memset(pre2,0,sizeof(pre2));
}
int main()
{
int flag=1;
while(cin>>n>>s>>e)
{
if(flag!=1) cout<<endl;
flag++;
init();
cin>>m;
for(int i=0;i<m;i++)
{
int x,y,z;
cin>>x>>y>>z;
addEdge(x,y,z);
addEdge(y,x,z);//无向图边加两遍
}
//跑两遍最短路,分别是起点为源点的最短路和终点为源点的最短路
dijkstra(s,dis1,pre1);
dijkstra(e,dis2,pre2);
int tmp_x,tmp_y;
cin>>k;
for(int i=0;i<k;i++)
{
int x,y,z;
cin>>x>>y>>z;
//ans=min(dis1[x]+dis2[y]+z,dis1[y]+dis2[x]+z);
//商业线的两端点分别为x,y,以下两种情况,源点到x和终点到y以及源点到y和终点到x
if(ans>dis1[x]+dis2[y]+z)
{
ans=dis1[x]+dis2[y]+z;
tmp_x=x;
tmp_y=y;
}
if(ans>dis1[y]+dis2[x]+z)
{
ans=dis1[y]+dis2[x]+z;
tmp_x=y;
tmp_y=x;
}
}
//与不走商业线比较
if(ans>dis1[e])
{//不走商业线耗时短
int index=0;
for(int i=e;i!=s;i=pre1[i])
sta1[index++]=i;
sta1[index]=s;
for(int i=index;i>0;i--)
cout<<sta1[i]<<" ";
cout<<sta1[0]<<endl;
cout<<"Ticket Not Used"<<endl;
cout<<dis1[e]<<endl;
}
else{//走商业线耗时短
for(int i=tmp_x;i!=s;i=pre1[i])
sta.push_back(i);
sta.push_back(s);
for(int i=tmp_y;i!=e;i=pre2[i])
sta.insert(sta.begin(),i);
sta.insert(sta.begin(),e);
//数组中路径存为:终点到起点,输出时应逆序输出
for(int i=sta.size()-1;i>0;i--)
cout<<sta[i]<<" ";
cout<<sta[0]<<endl;
cout<<tmp_x<<endl;
cout<<ans<<endl;
}
}
return 0;
}