*************
微积分入门
*************
对于二维平面来说,微积分的本质,就是求面积。
关于微积分,八卦一下:1699年,牛顿在剑桥大学当教授,当时剑桥大学发不出工资,牛顿就在苹果树下冥思苦想,后来的事情就是被苹果砸了一下,牛顿发现了万有引力,那个苹果,就成了现在的苹果。发现万有引力的同时,顺手发明了微积分。牛顿将微积分引入课堂,并设为必修,并且规定考试不合格的,下学期必须缴费重修,就这样,盘活了整个资金空缺。
举个例子,怎么计算一个 pizza 的面积?
数学的本质是抽象,这里直接将pizza抽象成一个标准圆。这是对pizza定性。
接下来,对pizza定量,上平平面直角坐标系。
由对称可知,只要计算圆的一半的面积就行,对称,总面积 = 一半的面积 × 2.
按照我现在的水平,我可以手搓微积分给你看:假设,我有一把很牛逼的刀,类似于《三体》里面的古筝计划的那个刀,薄且锋利:
不好意思,这个是水滴,古筝计划的刀由于太纤细,看不见,我就放在了水滴的下面,如果你放大看,还是能看到的。
将pizza切成 非常多 的小份:
|
假设,分成极限多的小份,每一份的宽度是 dx ,这就是对x进行微分,d是 对 的缩写,全称应该是 被分成微小的部分。恭喜你,掌握微积分的一半了,微分。
那么,将无数片pizza再拼起来,就是积分,全称应该是 积累被分成微小的部分。
由于整个半圆被无限的切分,所以上半部分的边长应该是扇形的边长,这个怎么求?
上过初中的都知道,圆的公式是 , r 是半径, 这里 r 取1。
所以,上半部分的方程就是:
对于被微分的部分,那就是一个标准的长方形啊,宽是dx,高是。
那么的话,长方形的面积就是:
|
所以,半个圆的面积就是, 意思就是 x 从 -1 到 1 的过程, 那个红色的线围起来的面积,数学一点的表示就是:
怎么解这个方程呢?这里两个天才数学家开始了撕逼。牛顿说是牛顿先发明的解法,莱布尼茨说是我莱布尼茨先发明的解法,两个人就开始在期刊上发表论文,开始撕逼。最后没办法,这个方程被定义为牛顿-莱布尼茨方程:
记住这个伟大的方程,这个极大的简化了 微积分的计算。
那么 F(X) 又是什么呢?
这里注意,对F(x)求导,结果是f(x), 也就是
这里求导公式,上过高数的人都知道这里面的水有多深。
直接开导:
这里注意一件事情,函数必须连续连续,才可以求导,
可导一定连续,连续不一定可导。
这个是进阶知识了,这里仅做拓展。
回到pizza, ,
令 ,别问,你只管导,剩下的就是Mathletic Tricks.
原式就 =
二倍角公式:
所以原式 =
又由于
且
so original =
最后经过一系列的数学计算,就可以得到
s = 2 * 二分之一 * π,也就是π,这里,你就发明了圆的公式:
s = π * r²
所以,这里直接证明出来了一个生活中的小妙招,4寸的pizza的面积其实是8寸pizza面积的1/4.
但是,如果是球体的话,体积是1/8,这里后面有时间可以证明。
卖pizza的店员肯能会骗你,但是数学不会,数学不会就是不会。
关于牛顿-莱布尼茨的公式证明,也是非常严谨的一段抽象的过程。
先看现代计算机的证明,f(x)中,f(0)~f(i)与x轴围城的面积在F(i)中画出来:
对Fx求导就是fx,而之前最开始介绍的微积分的本质在二维就是求面积,那么f中,a~b围成的area就是 F(x) 的值。
在没有计算机可视化求解过程之前,有个哥们叫拉格朗日,想出来一个牛逼的定理,那就是拉格朗日中值定理,最牛逼的应用就是油罐车中,为了阻止油罐车内液体由于惯性带来的巨大能量导致刹车不稳时,会在油罐内部装上扰流板,
拉格朗日中值定理说的是,在一个区间内,如果函数在这个区间上连续并且在内部可导,那么存在一个点,使得函数在这个点的导数等于平均变化率。具体来说,就是存在一个点c,使。
为了证明拉格朗日中值定理,还有一个牛逼的哥们叫罗尔,罗尔在霍格沃滋选修魔法,辅修数学。
扯远了,这个是罗恩。
罗尔说,如果一个函数在[a,b]上连续,在(a,b)上可导,并且f(a)=f(b),那么存在一个c,c∈(a,b),使得f′(c)=0。这个很好证明,最简单的例子就是直线,众所周知,常数的导数是0,因为变化率是0,导数的另一个定义就是变化绿。
聪明的你一定会想到构造一个函数:
这样,g(a) = g(b) = 0,那么,存在一个c,g'(c) = 0, 求导就是,
证毕。
真正用到的是数学的抽象,开始抽象。
开始证明:
假设,我有一个F(x).
不证明了,会用就行了。
星光不问赶路人,但是我会问啊。