- 博客(216)
- 资源 (6)
- 收藏
- 关注
原创 python tkinter的基础用法
from tkinter import *windows = Tk()windows.title('first windows')# 设置大小,但是中间的那个符号是x,未知数的那个x,而不是乘号。windows.geometry("350x200")lbl = Label(windows, text='Hello',)# 设置在窗口的位置,但是我改了下面的参数,却看不到任何变化,为何?lbl.grid(column=0, row=0)# 这个是设置一个按钮def clicked():
2022-02-16 18:33:35
693
1
原创 latex常用的公式
q1=\begin{equation}\left\{ \begin{array}{lr} 1-p_1, & if\ p_1<p_2 \\ 0, & if\ p_1>p_2 & \end{array}\right.\end{equation}这个是大括号S:0\leq P \leq 1小于等于大于等于是\geq也就是greater equal
2021-11-22 13:15:11
270
原创 链家信息python
from bs4 import BeautifulSoupimport reimport urllib.request, urllib.errorimport xlwt# 该程序用来爬取链家的数据,房山的数据,把网址换一换就能改成其他的def main(area,pageNum): # baseurl = "https://bj.lianjia.com/ershoufang/fengtai/pg" baseurl = "https://bj.lianjia.com/ershou
2021-11-21 19:14:39
557
原创 爬取豆瓣top250的代码
from bs4 import BeautifulSoupimport reimport urllib.request,urllib.errorimport xlwtimport sqlite3def main(): baseurl = "https://movie.douban.com/top250?start=" datalist = getData(baseurl) # 保存数据 savepath = "豆瓣电影top250.xls" saveDa
2021-11-01 10:37:10
1018
原创 2021-11-01 Excel之九九乘法表
import xlwt# 为了练习一下,可以写一个99乘法表workbook = xlwt.Workbook(encoding="utf-8")worksheet = workbook.add_sheet('sheet1')for i in range(1, 10): print("第"+str(i)+"行") for j in range(1, i+1): multi = i * j print(str(i)+"*"+str(j)+"="+str(m
2021-11-01 10:20:22
229
原创 2021-10-28 python爬虫学习
t_list = bs.select("#u1")# 使用#u1表示通过ID来查找前面加一个“#”表示通过ID来查找。正则表示实际上就是字符串的匹配过程pat = re.compile("AA")# 这里面是正则表达式m = pat.search("CBA")search就是只能找到第一个search也可以直接用,其中前面是规则,后面的被检测的东西m = re.search("sac","Adsadafsasdasdasac")print(m)re.findall也是一样的,使用
2021-10-28 15:17:53
127
原创 2021-10-13企业财务数据风险预警之随机森林
# copyright by huatianxue 2021年10月13日16:08:25 for my wife# 尝试一下随机森林进行分类from sklearn.preprocessing import StandardScalerfrom sklearn.ensemble import RandomForestClassifierimport numpy as npimport read_data as rd# read_data 是我自己写的函数,用作封装读取数据这个环节的path
2021-10-13 16:15:30
382
原创 2021-10-11关于Ubuntu安装搜狗输入法
实际上很简单,网上很多方法设置的都是花里胡哨的。第一步,下载搜狗输入法的.deb第二步,安装第三步,就把输入法调整为fcitx重启即可。ps,另外,我发现一个很神奇的事情,原来的硬盘是Ubuntu20.04,我给拆下来之后,如果连着那个重启,就能得到另外一个系统。也就是说,那是另外一个电脑。...
2021-10-11 21:37:56
317
原创 自动驾驶之十字路口
% 生成自动驾驶车辆的十字路口% 完美擦肩而过% copyright by liwei 2021年10月9日14:37:48%% 添加十字道路s = drivingScenario;roadCenters = [0,0;100,0];% 从坐标(0,0)到坐标(100,0)roadWidth = 16;road(s, roadCenters, roadWidth,'Lanes',lanespec(2));% 创建双车道线roadCenters = [50,-50;50,50];road
2021-10-09 14:44:28
511
原创 关于公司财务的预测,使用sklearn中的bp神经网络
目标:已经有551个数据,试图构造一个bp神经网络,通过一个企业的各项指标来判断这个企业属于哪一类。我写了两个函数,一个是主函数main,一个是读取数据和预处理的函数read_data,其中read_data函数的代码如下:# 该函数读取数据并分类import pandas as pddef judge(a): # 该函数用来分类,分类依据为: # 80分以上是1类 # 40~80分是2类 # 0~40分是3类 # -40~0是4类 # 小于-4
2021-10-04 17:15:36
6657
5
原创 chmod 更改权限
chmod +/-+代表增加权限,-代表减少权限在+/- 后面可以跟上三个字符,rwxr代表可读w代表可写x代表可执行权限最后加上文件名或者目录名字例如:chmod + r aaa给aaa增加一个可读权限chmod + x aaa给aaa增加一个可执行权限...
2021-10-02 20:44:16
206
原创 查看Ubuntu中的ip地址
一般情况下,使用ifconfig足够了,但是我这个物理机不知道怎么回事,就是不行。物理机是Ubuntu的。于是,从网上搜的另一个办法:hostname -I这个是好使的,第一个就是
2021-10-02 20:10:50
1904
原创 ubuntu安装微信
https://hub.fastgit.org/wszqkzqk/deepin-wine-ubuntu/从这个github镜像里面下载相应的版本进行安装就好了。当然,前置需要安装下载一个deepin-wine-for-ubuntu关于安装下载deepin-wine-for-ubuntu,详见:b站https://www.bilibili.com/video/BV1hA411H7GK?from=search&seid=12518726599504141661&spm_id_from=
2021-09-26 22:38:21
134
原创 使用域代码来给公式编号出现的错误
当时我把大标题给改了,所以在改完大标题的时候,估计是一不小心把域代码也给删掉了,域代码切换:alt+f9也就是这个,被删掉了,导致后面的公式章节都往前提了一个。
2021-09-25 23:15:30
632
原创 虚拟机中安装win7
最最主要的是那个win7镜像文件,不超过4个G,在https://msdn.itellyou.cn/里面找,使用迅雷下载倒数第四个 下载旗舰版把这一串使用迅雷下载即可!
2021-09-24 23:05:10
97
原创 定投计算器和年化利率计算器
为了能够理性的投资,以免对未来收益有不切实际的认识,我编写了一个定投计算器。定投计算器每月定投额 = 500投资年限 = 30# 以年为单位年化利率 = 0.12总月数 = 投资年限*12总投资额 = 每月定投额*总月数# 每年12个月,单位万元总收入 = 0单个月份的收益 = 0# 先初始化for i in range(总月数): print("第"+str(i)+"月") # i代表第i个月,从0开始计算,到第240个月 某个月份的投资年数 = (总月数
2021-09-12 10:59:50
4524
原创 公式排版拯救计划
本文不适用使用mathtype敲入的公式,仅仅适用于word自带的公式编辑器!本文不适用使用mathtype敲入的公式,仅仅适用于word自带的公式编辑器!本文不适用使用mathtype敲入的公式,仅仅适用于word自带的公式编辑器!步骤1敲入公式步骤2windows下按alt+f9进入域模式步骤3按下ctrl+f9,编辑域,在每个大标题下写入如下的域步骤4在公式后敲入(2-1)公式的末尾和域代码之间要有一个#然后回车步骤5alt+f9退出域步骤6全选+f9更新,这样
2021-09-06 09:53:08
111
原创 设置python的中文字体显示
plt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus'] = False
2021-09-02 19:32:31
442
原创 混淆矩阵的可视化
import matplotlib.pyplot as pltimport numpy as npclasses = ['A', 'B', 'C', 'D', 'E']def plot_confusion_matrix(cm, savename, title='Confusion Matrix'): cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # 归一化 plt.figure(figsize=(12, 8), d.
2021-08-28 21:03:05
519
原创 产生信号的代码10分类
%% 产生所有的10类信号的时频图%% 2021年7月5日16:04:49,该版本对代码进行的精简% 每一行代码表示产生一种信号% 1.BFSK 2.BPSK 3.costas 4.CW 5.FRANK_LFM % 6.LFM 7.LFM_BC 8.LFM_CW 9.NLFM 10.step_freqclear;num=5; %样本数量dir='train'; %train or test 训练集或者测试集% num= 200;% dir='test'; %train or tes
2021-08-28 14:45:14
380
原创 2021-08-20 python安装及作图
anaconda安装https://blog.csdn.net/weixin_43715458/article/details/100096496pycharm安装https://www.runoob.com/w3cnote/pycharm-windows-install.html接下来就是给石头姐写的python作图程序啦目的:画出两个正太分布图像import mathimport numpy as npimport matplotlib.pyplot as pltu_1 = 24
2021-08-20 18:47:10
206
原创 DQL语言的学习
在网上看的学习资料是李玉婷的,她使用的版本比较旧,现在我正在使用的是mysql workbench。1关于导入myemployees.sql步骤1:打开相关的文件步骤2,运行步骤3:刷新然后左侧会出现一个新的myemployees的数据库...
2021-08-09 09:19:37
192
原创 mysql常用命令
1.查看当前所有的库show databases;2.打开指定的库use 库名3.查看当前库的所有表show tables;4.查看其他库的所有表show tables from 库名;5.创建表create table 表名(列名 列类型,列名 列类型,列名 列类型) 6.查看表结构desc 表名...
2021-08-08 10:18:37
65
原创 mysql常见命令
1 show databases;注意,后面有个分号,英文的。2创建一个表格create table my_info(id int,name varchar(20));3查看表格show tables;备注:其中,自己建立的这个表格一定得是在其文件夹下使用查看表格这个命令的。4查看表格的结构desc stuinfo;5 查看数据select * from stuinfo;...
2021-08-08 10:13:12
68
原创 非线性调频
% 以下是产生非线性调频的程序% 产生三个图,时域,频域,时频图clear;fc=25e6; %载频fs=100e6; %抽样频率T=3e-6; % 时长3usN=fs*T; % 300个点f_m=1e6/2; % 这个控制横线的尺寸,这个数字越大,横向放下的正弦波越多% 反之亦然m_f=20; % 控制纵向尺寸,这个数字越大,正弦的"波"上下幅度越大t=0:1/fs:T-1/fs;x=exp(1j*(2*pi*fc*t+m_f*sin(2*pi*f_m*t)));% 这个时候的带宽
2021-07-15 17:29:03
3484
原创 脉冲神经网络的开发公司AI-CTX
瑞士类脑芯片公司aiCTX宣布开源脉冲神经网络(SNN) 仿真平台SINABS(开源地址:https://gitlab.com/aiCTX/sinabs)。有两个特点:1.这个公司更加出来的性能看起来更好2.平均脉冲发放率100Hz这个数据是比较真实的...
2021-07-14 09:14:43
301
原创 2021-07-12 原来我用的是CPU,更改方法
def load(f, map_location=torch.device('cpu'), pickle_module=pickle, **pickle_load_args):serialization.py文件更改一下load的方式
2021-07-12 09:58:08
243
原创 spikingjelly里面的元组处理方式
在spikingjelly中,self.output_statistics是一个字典,字典打印出来是这个样子:Key:inputKey:{'shape': (100, 3, 32, 32), 'min': 0.0, 'max': 1.0, '99.9': 1.0}Key:128Key:({'shape': (100, 3, 32, 32), 'min': -2.4290657, 'max': 2.7537065, '99.9': 2.753706455230713},)Key:198
2021-07-12 09:10:02
204
1
原创 2021-07-07IF神经元模型
I(t)=CmdVm/dtI(t)=C_mdV_m/dtI(t)=CmdVm/dtdv/dt=RmI(t)dv/dt=R_mI(t)dv/dt=RmI(t)
2021-07-08 14:08:23
660
原创 混淆矩阵-python
conf_mat=np.zeros([5, 5])# 先定义一个空的混淆矩阵print("以下是输出的预测值和标签值") print("预测值为:"+str(out_spikes_counter.max(1)[1])) print("标签值为:"+str(label)) true_batch_i = label.cpu().numpy() # 这个是真实标签 pre_batch_i = out_spikes
2021-07-06 10:42:36
699
原创 根据企业财务进行风险分析——基于pytorch
0.引言现手头有500个左右的企业财务数据,共有12个特征,如:净资产收益率(年度)、总资产报酬率(年度)、成本费用利润率(年度)等等。本文目标是通过深度学习的方式来自动预测某一企业是否具有风险。首先通过人工鉴别的方式,给150个企业做出标签:0代表无风险,1代表有风险。这150个企业是训练集,剩下350个企业是测试集。(按照机器学习的通常原则,一般是60%的训练集,20%的验证集,20%的测试集,但是由于人工鉴别费时费力,暂时先给150个企业做出标签,如果效果不错,就多做一些标签,增加训练集。)然后
2021-07-04 13:29:45
1190
4
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人