自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(93)
  • 资源 (6)
  • 收藏
  • 关注

原创 STDP时间窗口

在大脑皮层神经网络模型中对Hebbian、anti-Hebbian,Symmertric这3种不同学习窗口的抑制性脉冲时间依赖可塑性anti-Hebbian类型学习窗口能根据网络中神经元放电率的变化,自适应调节突触权值以维持神经元放电;Hebbian和Symmertric类型学习窗口对神经元放电的抑制作用较强,不利于皮层神经元的放电。...

2021-01-18 10:23:39 6

原创 忆阻尖峰神经网络中基于STDP的模式识别学习的必要条件

Necessary conditions for STDP-based pattern recognition learning in amemristive spiking neural network忆阻器:忆阻器,全称记忆电阻器(Memristor)。它是表示磁通与电荷关系的电路器件。忆阻具有电阻的量纲,但和电阻不同的是,忆阻的阻值是由流经它的电荷确定。因此,通过测定忆阻的阻值,便可知道流经它的电荷量,从而有记忆电荷的作用。与DNN相比,SNN以峰值的速率和时间对信息进行编码,从而可以提供更细

2021-01-18 08:10:47 13

原创 A remark on the error-backpropagation learning algorithm for spiking neural networks

关于尖峰神经网络的误差反向传播学习算法的一点评论✩摘要在用于脉冲神经网络的误差反向传播学习算法中,必须将触发时间tαt^\alphatα区分为状态函数x(t)x(t)x(t)的函数。但是这种区分是不可能直接进行的,因为不能以标准形式将其表达为x(t)x(t)x(t)的函数。为了克服这个困难,Bohte等假设脉冲发时间tαt^\alphatα和状态x(t)x(t)x(t)在t=tαt=t^αt=tα附近存在线性关系。根据此假设,泛函的Frechet导数等于可以直接轻松计算的普通函数的导数。我们在此简短说明

2021-01-17 21:14:21 6

原创 Spike Timing–Dependent Plasticity: A Hebbian Learning Rule ///STDP时空依赖可塑性

关键词长期增强,长期抑郁,突触,记忆,反向传播动作电位摘要时空依赖可塑性(STDP)作为一种Hebbian突触学习规则,在从昆虫到人类的广泛物种的各种神经回路中得到了证明。 突触修饰依赖于突触前和突触后尖峰在几十毫秒的临界窗口内的顺序,具有深远的功能意义。 在过去的十年中,在理解STDP在兴奋性和抑制性突触的细胞机制以及神经元兴奋性和突触整合的相关变化方面取得了重大进展。 除了基本的不对称窗口外,最近的研究还揭示了STDP的几层复杂性,包括它对树突位置的依赖,复杂尖峰列诱导的突触修饰的非线性集成,以及

2021-01-17 21:04:18 24

原创 Error-backpropagation in temporally encoded networks of spiking neurons 误差传播在时间编码的脉冲神经网络

摘要监督学习的规则:spikeprop,类似于传统的误差反向传播。根据这个理论,我们论证了脉冲神经元可生物可解释性,能够表现复杂的非线性分类能力,通过时间编码的方式,和速率编码的方式一样好。解决了经典的“异或”问题。所需要的神经元数量更少。此外,我们还发现,在脉冲网络中,只有当使用时间常数大于编码间隔的脉冲响应函数时,才能完成可靠的时间计算,正如理论考虑所预测的那样。介绍对于在短时间内的速率代码计算,它通常被相信:在生物神经系统中,大量脉冲神经元的反应被集合起来,来获取一个瞬间的平均放电率。误差反向

2021-01-17 09:48:27 19

原创 The tempotron: a neuron that learns spike timing–based decisions 事件驱动

摘要我们提出了一种新的,生物学上可行的监督突触学习规则,使神经元能够有效地学习广泛的决策规则,就是把信息嵌入在脉冲的时空结构中,而不是简单的平均脉冲发射频率。神经元可以实现的随机时空模式的分类数量是其突触数量的几倍。我们不再使用单神经元,而是使用多神经元。我们的工作证明了神经系统学习解码嵌入在脉冲同步分布模式中的信息的高能力。介绍解密编码原则,神经元所代表的和过程信息已经困扰了大脑科学研究者半个世纪。通常情况下,神经元表示信息通过特闷的平均脉冲发放率。然而,实际上,听觉、嗅觉、触觉,脉冲发生对

2021-01-15 21:20:44 11

原创 知道哪里出错了,在于神经元数量我当时从16调整到32了

把神经元数量改一下就好了

2021-01-12 12:16:50 11

原创 代码放一段时间就放坏了???

大概两周没有看这个代码了,之前还是好好的,怎么现在调试不通了。。。

2021-01-12 10:44:05 11

原创 conversion of continuous-Valued Deep Networks to efficient Event-driven Networks for image classific

连续值深度网络到有效事件驱动网络的图像分类转换有直接训练的,也有ann转snn的,也有直接训练的Spiking deep convolutional neural networks for energy-efficient object recognitionCao, Y作者Yongqiang Cao

2020-12-30 09:40:50 13

原创 LIF模型及其变种 Training Spiking Deep Networks for Neuromorphic Hardware

标准LIF和软化LIF我们要计算原始网络的计算效率图像中有两个主要的计算来源:计算神经元和计算连接。每秒浮点计算(floating-point operations per second)突触的计算需要消耗大部分的能量这些方法为将传统的人工神经网络翻译为基于尖峰的神经形态硬件提供了新途径。我们提供了一些证据,表明这种实现比ANN的实现更节能。虽然我们的分析只考虑了静态图像分类,但我们期望在处理动态输入(例如视频)时,SNN的实际效率将变得明显。这是因为SNN本质上是动态的,并且需要采取许多模拟步骤

2020-12-30 09:05:37 24

原创 关于Training deep neural networks for binary communication with the Whetstone method的代码实现

GitHub网址如下:https://github.com/SNL-NERL/Whetstone/blob/master/examples/adaptive_mnist.py实现过程中解决的问题:1.Ubuntu下,python+TensorFlow+Keras版本问题经检验,配置版本为python3.8.5+TensorFlow2.2.0+Keras2.3.1可行2.关于磨刀石算法包的加载直接pip install whetstone 即可3.运行程序时,会报错显示“模块whetstone不

2020-12-30 07:50:44 29 2

原创 脉冲神经网络综述

其中无监督学习主要包括基于 1.2 节中 Hebb 与 STDP 两种突触可塑性规则的仿生学习算法,有监督学习则可以进一步划分为两个阶段:初期有监督学习算法与深度有监督学习算法。液体状态机和脉冲深度信念网络...

2020-12-28 19:53:01 32

原创 论文中的图片处理方法

以前我都是使用上下嵌入,现在感觉浮于文字上方比较好,然后中间使用shift+enter

2020-12-28 14:40:10 5

原创 WPS中ctrl+V失灵解决方案

亲测有效,开发工具–加载项,看是否加载了mathtype?取消该加载项后,就正常了。

2020-12-24 20:27:33 80

原创 Understanding LSTM Networks

理解LSTM网络If we are trying to predict the last word in “the clouds are in the sky,” we don’t need any further context – it’s pretty obvious the next word is going to be sky字符的预测RNN无法将很久之前的信息给联系起来。...

2020-12-21 20:41:40 5

原创 迈向人工通用智能与混合天玑芯片架构

介绍芯片包含156个Fcores,包含大约40000个神经元和一千万个突触,采用28nm的加工技术制作天玑占用面积是3.8∗3.8mm23.8*3.8mm^23.8∗3.8mm2Dendrite 到底代表个啥呀。。。突触消耗了绝大多数的能量。天玑提供的内部贷款大约每秒610GB1280GB的峰值运算性能...

2020-12-21 11:14:32 58

原创 Spyder里面好像不能用汉字

如题不能用就不能用吧,顺便提高一下英语水平,随时打开翻译工具就好了

2020-12-16 20:40:18 6

原创 积分上下限

积分\int无穷:infty∞\infty∞

2020-12-16 13:15:50 32

原创 Word中公式输入技巧

加^号 : \hat{x}加横线 : \overline{x}加宽^: \widehat{x}加波浪线 : \widetilde{x}加一个点 : \dot{x}加两个点: \ddot{x}以上是LaTeX中的,Word中,只需要把{}换成()即可

2020-12-16 13:02:25 7

原创 LaTeX中和Word中打公式的区别,求和符号

例如求和\varphi_i,从i=1到NLaTeX中的写法:\varphi_{i=1}^NWord中的写法:\varphi_(i=1)^N也就是说,一个是{}大括号,一个是小括号

2020-12-16 12:46:13 36

原创 ubuntu之anaconda之编辑器

可以使用jupyter notebook,也能用Spyder方法都一样,都是在打开终端,直接输入就好如启动Spyder:spyder

2020-12-08 09:48:32 7

原创 pytorch 之 imagefloder的用法

问题的关键在于如何确定图片和类别的对应关系from torchvision.datasets import ImageFolderdataset = ImageFolder('F:/my_code/data/0dB/train/')读入数据print(dataset.imgs[2])此时,dataset.imgs是一个列表,里面有很多元素,选中第2个输出的是('F:/my_code/data/0dB/train/BFSK\\BFSK100.jpg', 0)也就是说,imagefold

2020-12-08 08:31:05 8

原创 关于如何在word中写公式的方法

前文有叙述。现在补充几点:1.如果不是斜体的话,直接选中,然后ctrl+I就可以了2.如果涉及到积分,求和等情况,直接用上面固定格式的就好了,不必去记忆letax公式

2020-12-01 19:12:24 10

原创 matlab之结构体的创建与存储(CSV数据)

1.使用的版本是2019b2.直接双击csv文件(一定要只保留数字,其他的一概删掉),存储为数值矩阵3.创建结构体struct,方法很简单test_data.zero_dB=testaccuracy;4.存成mat格式save test_data

2020-11-25 10:42:17 183

原创 自动驾驶的场景库

现在很多企业是构建了许许多多的场景库,那么我们能不能换一种思路:直接使用强化学习的方法,让车辆在很多次的反复试验中,自主得到应该如何加速减速?

2020-11-25 07:54:35 82

原创 卷积神经网络

BN的原理:批规范化(Batch normalization)是深度学习中经常见到的一种训练trick,指在采用梯度下降法训练DNN时,对网络层中每个mini-batch的数据进行归一化,使其均值变为0,方差变为1,其主要作用是缓解DNN训练中的梯度消失/爆炸现象,加快模型的训练速度。BN的好处和原因:允许较大的学习率,加快模型收敛速度避免深层网络的梯度消失或爆炸问题减少对参数初始化方法的依赖...

2020-11-19 15:26:58 10

原创 关于Word2016敲入公式的新方法

可以使用LaTeX方式来敲入公式,非常方便具体操作步骤为:1.插入公式2.$你的公式$3.下拉右下角,然后选择“专用”

2020-11-18 21:51:46 13

原创 WPS关于尾注的细节

插入尾注,设置尾注的格式和正文的格式一样,但是多了一个上角标。字体都是仿宋3号,关键的问题在于参考文献那里不听话,我采取的方法是,先不管参考文献的格式,最后一起调整。

2020-11-11 10:25:19 7

原创 VGG16关于学习率如何影响精度效应

转自需要更正的地方:1.learning_rate = 1e-3 # 学习率学习率调的低一点比较好,不然容易出现正确率都是10%的情况2.测试模型阶段:原先的代码为: img = Variable(img, volatile=True).cuda() label = Variable(label, volatile=True).cuda()这时会出现一个错误,改为如下即可: with torch.no_grad()

2020-11-09 10:07:05 83

原创 ubuntu下进入对应的环境

conda activate py37

2020-11-04 10:53:26 41

原创 加载resnet18的代码

from torchvision.models import resnet18net = resnet18(pretrained=True)

2020-11-04 07:26:05 23

原创 下载的模型的位置(例如resnet18.pth)

C:\Users\Administrator.cache\torch\hub\checkpoints

2020-11-03 22:05:58 54

原创 cafir10分类图片转化为png图片(以文件夹分类好)

import cv2import numpy as npfile = './data/cifar-10-batches-py/test_batch'# print(file)def unpickle(file): # import _pickle as cPickle import pickle with open(file, 'rb') as fo: dict = pickle.load(fo,encoding="latin1") return di

2020-11-02 20:56:19 574

原创 二维数组画图

import numpy as npimport matplotlib.pyplot as pltdata = np.zeros((360, 360))data[120:160, 120:240] = 1data[160:240, 160:200] = 1print(type(data))plt.imshow(data)plt.show()关键在于plt.imshow方法,直接把data放进去就好了,画出来是一个“T”的形状...

2020-09-14 10:23:57 212

原创 关于word文章排版,图片的位置

感觉嵌入格式使用“四周环绕型”是比较好的

2020-09-08 08:41:08 32

原创 pytorch之mnist数据集存放位置以及本地加载

train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)把mnist数据

2020-09-05 09:09:56 566

原创 如何读取tensorboard文件 展现可视化

进到路径里面,例如:F:\my_python_code\clock_driven\examples\wj然后,右键打开命令行,输入tensorborad --logdir=123其中123是训练日志文件夹的名字然后打开本地网址:http://localhost:6006/即可查看。另外,这个是需要版本对应关系为:tensorflow-gpu2.3.0tensorboard2.3.0...

2020-09-03 09:49:11 30

原创 pytorch读取单通道图片

data_transform = transforms.Compose([ transforms.Resize(32), transforms.CenterCrop(28), transforms.Grayscale(num_output_channels=1), transforms.ToTensor()])# 读入图片train_dataset = datasets.ImageFolder(root='./single_channel/',

2020-08-31 17:00:22 253

原创 ImageFolder使用方法

ImageFolder假设所有的文件按文件夹保存好,每个文件夹下面存贮同一类别的图片,文件夹的名字为分类的名字例如:载入图片:train_dataset=ImageFolder('./time_fequence_image/')此时,看看这个train_dataset的类型:print(type(train_dataset))输出结果为:<class 'torchvision.datasets.folder.ImageFolder'>查看train_data里面的类别:p

2020-08-31 15:33:02 445

原创 关于pytorch里面的图像变换

关于读入图片:image = Image.open("F:\liwei\my_data\single_channel\BPSK\BPSK.1.jpg")看一看图片的样式print(image.size, image.format, image.mode)裁剪图片:裁剪成32像素的,短边resize成这个尺寸,长边安装对应比例进行缩放resize=torchvision.transforms.Resize(32)image=resize(image)然后可以进行中心裁剪:crop_ob

2020-08-31 14:30:14 88

随机过程第6次作业.pdf

随机过程及应用部分习题答案,主要包括帕普利斯和陆大金、张颢老师第二版版本的,也包含少量张卓奎、陈慧婵的

2020-03-31

随机过程第5次作业.pdf

随机过程及应用部分习题答案,主要包括帕普利斯和陆大金、张颢老师第二版版本的,也包含少量张卓奎、陈慧婵的

2020-03-31

随机过程第4次作业.pdf

随机过程及应用部分习题答案,主要包括帕普利斯和陆大金、张颢老师第二版版本的,也包含少量张卓奎、陈慧婵的

2020-03-31

随机过程第3次作业.pdf

随机过程及应用部分习题答案,主要包括帕普利斯和陆大金、张颢老师第二版版本的,也包含少量张卓奎、陈慧婵的

2020-03-31

随机过程-作业-20200305.pdf

随机过程及应用部分习题答案,主要包括帕普利斯和陆大金、张颢老师第二版版本的,也包含少量张卓奎、陈慧婵的

2020-03-31

作业-李伟-20200229.pdf

随机过程及应用部分习题答案,主要包括帕普利斯和陆大金、张颢老师第二版版本的,也包含少量张卓奎、陈慧婵的

2020-03-31

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除