深度学习:Conv1D和Conv2D的区别

知乎好文章

在这里插入图片描述

以上述这个图为例。

conv2d需要指定卷积核的大小为(2,8)。

conv1d一般用来处理nlp,每一行代表一个词向量,每一行当然要作为一个整体(请不要和我杠transformer的多头),因此只需要指定卷积核的大小为2.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值