待解决的代码2

该博客探讨了如何使用Python的NumPy和SymPy库进行矩阵操作,特别关注了如何通过`fsolve`函数求解线性方程组。通过实例演示了如何构造矩阵H,定义GH_T并利用模运算进行优化,最后展示了如何找到特定矩阵系统的解。
摘要由CSDN通过智能技术生成
import numpy as np
import sympy
from scipy.optimize import fsolve
from sympy import *

H = np.array(
            [[0, 0, 0, 1, 1, 1, 1],
             [0, 1, 1, 0, 0, 1, 1],
             [1, 0, 1, 0, 1, 0, 1]])

def func(X):
    '''

    '''

    H = np.array(
        [[0, 0, 0, 1, 1, 1, 1],
         [0, 1, 1, 0, 0, 1, 1],
         [1, 0, 1, 0, 1, 0, 1]])

    G1 = np.eye(4)

    G2 = [[X[0], X[1], X[2]]
        , [X[3], X[4], X[5]]
        , [X[6], X[7], X[8]]
        , [X[9], X[10], X[11]]]
    G = np.concatenate((G1, G2), axis=1)
    #print(G.shape)

    GH_T = np.dot(G, np.transpose(H))
    m, n = GH_T.shape[0], GH_T.shape[1]
    for i in range(m):
        for j in range(n):
            GH_T[i][j] %= 2
    GH_T = np.array(GH_T)
    GH_T = GH_T.reshape(1,12)
    #print(GH_T)

    return GH_T

for i in range(0,pow(2,12)):
    i_str = str(i)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值