【python】常见语法原理解析

虚拟环境Python找import模块顺序

在 Linux 系统的 Anaconda 虚拟环境中,Python 的模块搜索顺序与普通的 Python 环境类似,遵循以下规则:

  • 内置模块:Python 会首先搜索内置模块,这些模块是 Python 解释器自带的,无需额外安装。
  • 虚拟环境中的模块:接下来,Python 会在当前虚拟环境的 site-packages 目录中搜索模块。site-packages 目录通常位于虚拟环境的根目录下,用于存放虚拟环境中安装的第三方模块,一般为/home/your_username/anaconda3/envs/env_name/lib/pythonX.Y/site-packages
  • 系统级模块:如果在虚拟环境中找不到所需的模块,Python 会继续在系统级的模块搜索路径中查找。这通常包括系统默认的 Python 安装路径下的 site-packages 目录以及其他可能的系统级模块目录。
  • PYTHONPATH 环境变量:如果设置了 PYTHONPATH 环境变量,Python 也会在该变量指定的目录中搜索模块。
    # 查看当前虚拟环境下的所有python找包路径
    import sys
    print(sys.path)
    

实际应用

  • 一个python工具库脚本代码tool.py,其他工程里都会用到它,但不想每建一个新工程都把该文件复制一次,而且工具库tool.py会经常有更新,通过复制的方式无法保证每个工程里都是最新的。
    • 方法1:将tool.py父路径导入~/.bashrc文件
      #在~/.bashrc里写入
      PYTHONPATH=/you/wanna/import/module/path:${PYTHONPATH}
      #激活
      source ~/.bashrc
      
    • 方法2:在每新建一个工程的时候,将tool.py的父路径写入.env文件
      在工程根目录下创建一个名为.env的文件,里面写入:
      PYTHONPATH=/you/wanna/import/module/path:${PYTHONPATH}
      
      然后在.vscode/settings.json里写入:
      {
          "python.envFile": "${workspaceFolder}/.env"
      }
      
  • 在同一个工程里,文件夹内python文件有相互调用的情况,需要把工程根目录加入到python搜索路径里
    添加具体步骤看这里

lambda 表达式

又称为匿名函数,是一种快捷的定义函数方式,无需按常规使用def关键字。

add = lambda x, y: x + y
print(add(5, 3))  # 输出 8
numbers = [5, 1, 9, 3, 7]
sorted_numbers = sorted(numbers, key=lambda x: -x)  # 按照numbers里元素相反数的增序排列[-9, -7, -5, -3, -1], 所以本质就是对numbers进行降序排列
print(sorted_numbers) #[9, 7, 5, 3, 1]

sorted函数里的key参数是一个函数,上面例子表示按照numbers里每个数字的相反数进行增序排序。

eval()

eval() 函数尝试计算字符串表示的表达式的值,意味着这个函数接收一个字符串作为输入,该字符串定义了一个有效的Python表达式,然后 eval() 会计算这个表达式,并返回表达式的结果。

这里的“表达式”可以是:

  • 一个数学运算,例如 “2 + 3”。
  • 对一个变量的引用,例如 “a”(假设变量 a 已经在当前或提供的命名空间中定义)。
  • 调用一个函数,例如 “my_function(5)”(假设 my_function 已经在当前或提供的命名空间中定义)。
  • 任何其他有效的Python表达式。
# 定义一些变量和函数
a = 10
b = 20
def my_function(x):
    return x * 2

# 使用 eval() 计算表达式
expression1 = "a + b"  # 变量引用和数学运算
expression2 = "my_function(10)"  # 函数调用

# 计算表达式的值
result1 = eval(expression1)  # 返回 30
result2 = eval(expression2)  # 返回 20

print(result1)  # 输出: 30
print(result2)  # 输出: 20

@staticmethod

@staticmethod 是一个装饰器,用于将一个方法定义为静态方法。
静态方法是属于类而不是类的实例的方法。它不依赖于类的实例,可以直接通过类名来调用,而不需要创建类的实例。

class MyClass:
    @staticmethod
    def static_method():
        print("This is a static method")

# 直接通过类名调用静态方法
MyClass.static_method()

静态方法与普通方法(实例方法)的主要区别在于:

  • 静态方法不接收 self 参数(即类的实例本身)作为第一个参数。
  • 它不能访问或修改类的实例属性。

迭代器

如果一个类A实现了__next__()方法,该类实例化的对象就是迭代器(iterator)。
如果一个类B实现了__iter__()方法,该类实例化的对象就是可迭代的(iterable),体现在可以通过for in来遍历。__iter__()方法必须返回一个迭代器。

  • 当类B中__iter__()返回的迭代器是类A实例化对象:
# 迭代器
class A:
	def __init__(self, idx):
		self.idx = idx
	def __next__(self):
		if self.idx < 5:
			cur = self.idx
			self.idx += 1
			return cur
		else:
			raise StopIteration
# 可迭代
class B:
	def __init__(self, idx):
		self.idx = idx
	def __iter__(self):
		return A(self.idx)
		
exp = B(0)	# 执行class B 中的__init__()函数,创建一个类B的实例化对象
# 执行class B中的__iter__()函数,创建一个class A的实例化迭代器对象,再反复执行该实例中的__next__()函数,并将返回值赋给i,直到触发停止迭代条件
for i in exp: 
	print(i)	
print("second output")
# 执行class B中的__iter__()函数,重新创建一个新的class A的实例化迭代器对象,再反复执行class A中的__next__()函数,并将返回值赋给i,直到触发停止迭代条件
for i in exp:
	print(i)

在这里插入图片描述
__iter()__方法

  • 当类B既有__next__()又有__iter__(), 且__iter__()返回的是自身时,此时类B实例化对象既是迭代器,又是可迭代的。
class B:
	def __init__(self, idx):
		self.idx = idx
		
	def __iter__(self):
		return self
	
	def __next__(self):
		if self.idx < 5:
			cur = self.idx
			self.idx += 1
			return cur
		else:
			raise StopIteration

exp = B(0)	# 执行class B 中的__init__()函数,创建一个类B的实例化对象
# 执行class B中的__iter__()函数,将上一步创建的类B实例化对象作为迭代器,再反复执行该实例中的__next__()函数,并将返回值赋给i,直到触发停止迭代条件
for i in exp:
	print(i)
print("second")	
# 执行class B中的__iter__()函数,继续将类B实例化对象作为迭代器, 但由于第一次循环遍历导致该迭代器内部计数状态不为0,且超出了遍历范围,故本次循环无输出
for i in exp:
	print(i)

在这里插入图片描述

迭代器一般有个内部状态来记录遍历到哪个元素了,比如self._count

二者区别参考文档看这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值