虚拟环境Python找import模块顺序
在 Linux 系统的 Anaconda 虚拟环境中,Python 的模块搜索顺序与普通的 Python 环境类似,遵循以下规则:
- 内置模块:Python 会首先搜索内置模块,这些模块是 Python 解释器自带的,无需额外安装。
- 虚拟环境中的模块:接下来,Python 会在当前虚拟环境的 site-packages 目录中搜索模块。site-packages 目录通常位于虚拟环境的根目录下,用于存放虚拟环境中安装的第三方模块,一般为
/home/your_username/anaconda3/envs/env_name/lib/pythonX.Y/site-packages
- 系统级模块:如果在虚拟环境中找不到所需的模块,Python 会继续在系统级的模块搜索路径中查找。这通常包括系统默认的 Python 安装路径下的 site-packages 目录以及其他可能的系统级模块目录。
- PYTHONPATH 环境变量:如果设置了 PYTHONPATH 环境变量,Python 也会在该变量指定的目录中搜索模块。
# 查看当前虚拟环境下的所有python找包路径 import sys print(sys.path)
实际应用:
- 一个python工具库脚本代码tool.py,其他工程里都会用到它,但不想每建一个新工程都把该文件复制一次,而且工具库tool.py会经常有更新,通过复制的方式无法保证每个工程里都是最新的。
- 方法1:将tool.py父路径导入
~/.bashrc
文件#在~/.bashrc里写入 PYTHONPATH=/you/wanna/import/module/path:${PYTHONPATH} #激活 source ~/.bashrc
- 方法2:在每新建一个工程的时候,将tool.py的父路径写入
.env
文件
在工程根目录下创建一个名为.env
的文件,里面写入:
然后在PYTHONPATH=/you/wanna/import/module/path:${PYTHONPATH}
.vscode/settings.json
里写入:{ "python.envFile": "${workspaceFolder}/.env" }
- 方法1:将tool.py父路径导入
- 在同一个工程里,文件夹内python文件有相互调用的情况,需要把工程根目录加入到python搜索路径里
添加具体步骤看这里
lambda 表达式
又称为匿名函数,是一种快捷的定义函数方式,无需按常规使用def关键字。
add = lambda x, y: x + y
print(add(5, 3)) # 输出 8
numbers = [5, 1, 9, 3, 7]
sorted_numbers = sorted(numbers, key=lambda x: -x) # 按照numbers里元素相反数的增序排列[-9, -7, -5, -3, -1], 所以本质就是对numbers进行降序排列
print(sorted_numbers) #[9, 7, 5, 3, 1]
sorted函数里的key参数是一个函数,上面例子表示按照numbers里每个数字的相反数进行增序排序。
eval()
eval() 函数尝试计算字符串表示的表达式的值,意味着这个函数接收一个字符串作为输入,该字符串定义了一个有效的Python表达式,然后 eval() 会计算这个表达式,并返回表达式的结果。
这里的“表达式”可以是:
- 一个数学运算,例如 “2 + 3”。
- 对一个变量的引用,例如 “a”(假设变量 a 已经在当前或提供的命名空间中定义)。
- 调用一个函数,例如 “my_function(5)”(假设 my_function 已经在当前或提供的命名空间中定义)。
- 任何其他有效的Python表达式。
# 定义一些变量和函数
a = 10
b = 20
def my_function(x):
return x * 2
# 使用 eval() 计算表达式
expression1 = "a + b" # 变量引用和数学运算
expression2 = "my_function(10)" # 函数调用
# 计算表达式的值
result1 = eval(expression1) # 返回 30
result2 = eval(expression2) # 返回 20
print(result1) # 输出: 30
print(result2) # 输出: 20
@staticmethod
@staticmethod 是一个装饰器,用于将一个方法定义为静态方法。
静态方法是属于类而不是类的实例的方法。它不依赖于类的实例,可以直接通过类名来调用,而不需要创建类的实例。
class MyClass:
@staticmethod
def static_method():
print("This is a static method")
# 直接通过类名调用静态方法
MyClass.static_method()
静态方法与普通方法(实例方法)的主要区别在于:
- 静态方法不接收 self 参数(即类的实例本身)作为第一个参数。
- 它不能访问或修改类的实例属性。
迭代器
如果一个类A实现了__next__()
方法,该类实例化的对象就是迭代器(iterator
)。
如果一个类B实现了__iter__()
方法,该类实例化的对象就是可迭代的(iterable
),体现在可以通过for in
来遍历。__iter__()
方法必须返回一个迭代器。
- 当类B中
__iter__()
返回的迭代器是类A实例化对象:
# 迭代器
class A:
def __init__(self, idx):
self.idx = idx
def __next__(self):
if self.idx < 5:
cur = self.idx
self.idx += 1
return cur
else:
raise StopIteration
# 可迭代
class B:
def __init__(self, idx):
self.idx = idx
def __iter__(self):
return A(self.idx)
exp = B(0) # 执行class B 中的__init__()函数,创建一个类B的实例化对象
# 执行class B中的__iter__()函数,创建一个class A的实例化迭代器对象,再反复执行该实例中的__next__()函数,并将返回值赋给i,直到触发停止迭代条件
for i in exp:
print(i)
print("second output")
# 执行class B中的__iter__()函数,重新创建一个新的class A的实例化迭代器对象,再反复执行class A中的__next__()函数,并将返回值赋给i,直到触发停止迭代条件
for i in exp:
print(i)
__iter()__
方法
- 当类B既有
__next__()
又有__iter__()
, 且__iter__()
返回的是自身时,此时类B实例化对象既是迭代器,又是可迭代的。
class B:
def __init__(self, idx):
self.idx = idx
def __iter__(self):
return self
def __next__(self):
if self.idx < 5:
cur = self.idx
self.idx += 1
return cur
else:
raise StopIteration
exp = B(0) # 执行class B 中的__init__()函数,创建一个类B的实例化对象
# 执行class B中的__iter__()函数,将上一步创建的类B实例化对象作为迭代器,再反复执行该实例中的__next__()函数,并将返回值赋给i,直到触发停止迭代条件
for i in exp:
print(i)
print("second")
# 执行class B中的__iter__()函数,继续将类B实例化对象作为迭代器, 但由于第一次循环遍历导致该迭代器内部计数状态不为0,且超出了遍历范围,故本次循环无输出
for i in exp:
print(i)
迭代器一般有个内部状态来记录遍历到哪个元素了,比如self._count
二者区别参考文档看这里。