[FFT/IFFT]快速傅里叶(逆)变化 + 递归和递推模板

现在时间是2021-2-2,重新回来看2019学习的一知半解的 F F T FFT FFT,又有了新的理解
所以修改了以往写过的文章,并增添些许内容
因为过去一年多,上了高中,学的知识多了些,以前不懂的有些东西现在看来挺简单的??

  • Add
    建议了解系数和点值表示法后直接从复数看起
    因为前面很多是第一次学习的时候,为了全面了解
    然而似乎并没有起到这个效果??

引入

如果给你一个多项式 A ( x ) = ∑ a n x n A(x) = ∑a_nx^n A(x)=anxn B ( x ) = ∑ b n x n B(x) = ∑b_nx^n B(x)=bnxn,求 A ( x ) ⋅ B ( x ) A(x) · B(x) A(x)B(x)
你会怎么做??
——可能只能选择 O ( n 2 ) O(n^2) O(n2),做 ∑ i = 1 n ∑ j = 1 m a i ∗ b j \sum_{i=1}^n\sum_{j=1}^mai*bj i=1nj=1maibj
但是你觉得那些毒瘤出题dalao,会让你轻轻松松 O ( n 2 ) O(n^2) O(n2)水过去吗?
在这里插入图片描述
如此之高的时间复杂度永远成为了多项式乘法的一个瓶颈…
直到伟大的 F F T FFT FFT就出现了,将其优化到 O ( n l o g n ) O(nlogn) O(nlogn)专治


系数和点值表示法

对于求一个 n − 1 n-1 n1次的多项式 f ( x ) f(x) f(x),可以有两种表示方法,并且可以互相转化

系数表示法

概念

f ( x ) = ∑ i = 0 n − 1 c i ∗ x i f(x)=\sum_{i=0}^{n-1}c_i*x^i f(x)=i=0n1cixi
什么意思呢?
🍔设 f ( x ) = ( a 0 ∗ x 0 + a 1 ∗ x 1 + a 2 ∗ x 2 ) ∗ ( b 0 ∗ x 0 + b 1 ∗ x 1 + b 2 ∗ x 2 ) f(x)=(a_0*x^0+a_1*x^1+a_2*x^2)*(b_0*x^0+b_1*x^1+b_2*x^2) f(x)=(a0x0+a1x1+a2x2)(b0x0+b1x1+b2x2)

那么一一相乘将之拆成了九项式子相加
f ( x ) = a 0 b 0 ∗ x 0 + a 0 b 1 ∗ x 1 + a 0 b 2 ∗ x 2 + a 1 b 0 ∗ x 1 + a 1 b 1 ∗ x 2 f(x)=a_0b_0*x^0+a_0b_1*x^1+a_0b_2*x^2+a_1b_0*x^1+a_1b_1*x^2 f(x)=a0b0x0+a0b1x1+a0b2x2+a1b0x1+a1b1x2
+ a 1 b 2 ∗ x 3 + a 2 b 0 ∗ x 2 + a 2 b 1 ∗ x 3 + a 2 b 2 ∗ x 4 +a_1b_2*x^3+a_2b_0*x^2+a_2b_1*x^3+a_2b_2*x^4 +a1b2x3+a2b0x2+a2b1x3+a2b2x4

进行同类项合并
f ( x ) = a 0 b 0 ∗ x 0 + ( a 0 b 1 + a 1 b 0 ) ∗ x 1 + ( a 0 b 2 + a 1 b 1 + a 2 b 0 ) ∗ x 2 f(x)=a_0b_0*x^0+(a_0b_1+a_1b_0)*x_1+(a_0b_2+a_1b_1+a_2b_0)*x^2 f(x)=a0b0x0+(a0b1+a1b0)x1+(a0b2+a1b1+a2b0)x2
+ ( a 1 b 2 + a 2 b 1 ) ∗ x 3 + a 2 b 2 ∗ x 4 +(a_1b_2+a_2b_1)*x^3+a_2b_2*x^4 +(a1b2+a2b1)x3+a2b2x4

c 0 = a 0 b 0 c_0=a_0b_0 c0=a0b0
c 1 = ( a 0 b 1 + a 1 b 0 ) c_1=(a_0b_1+a_1b_0) c1=(a0b1+a1b0)
c 2 = ( a 0 b 2 + a 1 b 1 + a 2 b 0 ) c_2=(a_0b_2+a_1b_1+a_2b_0) c2=(a0b2+a1b1+a2b0)
c 3 = ( a 1 b 2 + a 2 b 1 ) c_3=(a_1b_2+a_2b_1) c3=(a1b2+a2b1)
c 4 = a 2 b 2 c_4=a_2b_2 c4=a2b2

用中国话来理解就是 c i c_i ci是我们整合后的对于 x i x^i xi的系数和,将这些相加就是最后的 f ( x ) f(x) f(x)


  • Add
    c i c_i ci本质来说可以看作是两个函数的卷积
    h ( n ) = ∑ i = 0 n − 1 c i   x i , f ( n ) = ∑ i = 0 n − 1 a i   x i , g ( n ) = ∑ i = 0 n − 1 b i   x i h(n)=\sum_{i=0}^{n-1}c_i\ x^i,f(n)=\sum_{i=0}^{n-1}a_i\ x^i,g(n)=\sum_{i=0}^{n-1}b_i\ x^i h(n)=i=0n1ci xi,f(n)=i=0n1ai xi,g(n)=i=0n1bi xi ⇒ c i = ∑ j = 0 i a j × b i − j \Rightarrow c_i=\sum_{j=0}^ia_j\times b_{i-j} ci=j=0iaj×bij

系数表示法 → \rightarrow 点值表示法

就是把 x i x_i xi带进去就可以算出来每一个点 i i i的函数值,就可以表示该点 ( x i , y i ) (x_i,y_i) (xi,yi)
y i = ∑ j = 0 n − 1 c j ∗ x i j y_i=\sum_{j=0}^{n-1}c_j*x_i^j yi=j=0n1cjxij

系数表示法的优缺点

优点
多项式的求值计算效率高,对于 A ( x ) = a 0 + a 1 ∗ x 1 + a 2 ∗ x 2 . . . a n ∗ x n A(x)=a_0+a_1*x^1+a_2*x^2...a_n*x^n A(x)=a0+a1x1+a2x2...anxn
提一个同类项 x x x,变成
A ( x ) = a 0 + x ( a 1 + a 2 ∗ x + . . . a n ∗ x n − 1 ) A(x)=a_0+x(a_1+a_2*x+...a_n*x^{n-1}) A(x)=a0+x(a1+a2x+...anxn1),不停地提 x x x出来
我们就可以在 a 0 a_0 a0处通过霍纳法则 O ( n ) O(n) O(n)算出来

多项式的加减计算效率也高
A ( x ) = a 0 + a 1 ∗ x 1 + a 2 ∗ x 2 + . . . + a n − 1 ∗ x n − 1 A(x)=a_0+a_1*x^1+a_2*x^2+...+a_{n-1}*x^{n-1} A(x)=a0+a1x1+a2x2+...+an1xn1
B ( x ) = b 0 + b 1 ∗ x 1 + . . . + b n − 1 ∗ x n − 1 B(x)=b_0+b_1*x^1+...+b_{n-1}*x^{n-1} B(x)=b0+b1x1+...+bn1xn1
可以通过 O ( n ) O(n) O(n),算出 C ( x ) = c 0 + c 1 ∗ x 1 + . . . + c n − 1 ∗ x n − 1 C(x)=c_0+c_1*x^1+...+c_{n-1}*x^{n-1} C(x)=c0+c1x1+...+cn1xn1
对于每一个 i ∈ [ 0 , n ) i∈[0,n) i[0,n),都有 c i = a i + b i c_i=a_i+b_i ci=ai+bi,其实就是直接系数方面的相加减

缺点
多项式的乘法计算时间复杂度将达到 O ( n 2 ) O(n^2) O(n2)
1.感性理解就是我们要枚举 A A A里面的每一项,再与 B B B里面的每一项进行相乘再合并同类项
2.数学公式表达则是:解释一下为什么上界是 2 n − 2 2n-2 2n2
额其实很好想, A , B A,B A,B的最高项都是 x n − 1 x^{n-1} xn1相乘肯定就是 C C C的最高项,也就是 x 2 n − 2 x^{2n-2} x2n2
C ( x ) = ∑ i = 0 2 n − 2 c i ∗ x i , c i = ∑ j = 0 i a j b i − j C(x)=\sum_{i=0}^{2n-2}c_i*x^i,c_i=\sum_{j=0}^ia_jb_{i-j} C(x)=i=02n2cixi,ci=j=0iajbij

点值表示法

概念

给一堆点对 ( x 1 , x 2 , x 3 . . . x n ) , ( y 1 , y 2 , y 3 . . . y n ) (x_1,x_2,x_3...x_n),(y_1,y_2,y_3...y_n) (x1,x2,x3...xn),(y1,y2,y3...yn),满足 f ( x i ) = y i f(x_i)=y_i f(xi)=yi
( x i , y i ) (x_i,y_i) (xi,yi)是曲线上 y = f ( x ) y=f(x) y=f(x)的点


  • Add
    这样表示似乎更好?
    ( x 0 , y 0 ) , ( x 1 , y 1 ) , ( x 2 , y 2 ) . . . . ( x n − 1 , y n − 1 ) (x_0,y_0),(x_1,y_1),(x_2,y_2)....(x_{n-1},y_{n-1}) (x0,y0),(x1,y1),(x2,y2)....(xn1,yn1)

用中国话来讲就是我们知道了平面直角坐标系上某条函数的 n n n对点
然后就可以勾勒出这一条唯一的函数图象

要确定一条函数的图像,要至少知道函数最高次+1个不同的点

简单证明一下:
1.感性理解,我们说两个点确定一条直线,也就是说要两个点才能画出一次函数
而我们的抛物线又要三个点才能画出二次函数 . . . ... ...以此类推
2.运用解方程的方法,我们面对四个点会设 f ( x ) = a ∗ x 3 + b ∗ x 2 + c ∗ x 1 + d f(x)=a*x^3+b*x^2+c*x^1+d f(x)=ax3+bx2+cx1+d
四个不同的方程对应四个解
在这里插入图片描述感觉好像是一样的证明,别管这么多了,反正都是简单证明,口胡口胡

点值表达式–>系数表达式

f ( x ) = ∑ i = 0 n − 1 y i ∏ j ≠ i ( x − x j ) ∏ j ≠ i ( x i − x j ) f(x)=\sum_{i=0}^{n-1}y_i\frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\ne i}(x_i-x_j)} f(x)=i=0n1yij=i(xixj)j=i(xxj)
这个证明要用到拉格朗日插值法,但是因为我们一般不用这玩意儿,老子就不搞了,太现实了

点值表达式的优缺点

优点
加减法计算效率高:对两个点值表达的次数界为 n n n的多项式,计算只有 O ( n ) O(n) O(n)
如果 C ( x ) = A ( x ) + b ( x ) C(x)=A(x)+b(x) C(x)=A(x)+b(x),那么 C ( x k ) = A ( x k ) + B ( x k ) C(x_k)=A(x_k)+B(x_k) C(xk)=A(xk)+B(xk)

更具体而言:对于给定的 A ( x 0 , y 0 ) , ( x 1 , y 1 ) . . . ( x n − 1 , y n − 1 ) ) , B ( x 0 , y 0 ′ ) , ( x 1 , y 1 ′ ) . . . ( x n − 1 , y n − 1 ′ ) ) A{(x_0,y_0),(x_1,y_1)...(x_{n-1},y_{n-1}))},B{(x_0,y_0'),(x_1,y_1')...(x_{n-1},y_{n-1}'))} A(x0,y0),(x1,y1)...(xn1,yn1)),B(x0,y0),(x1,y1)...(xn1,yn1))
那么 A A A B B B对相同的 n n n个点对求和, C C C的点对就表示成 C ( x 0 , y 0 + y 0 ′ ) , ( x 1 , y 1 + y 1 ′ ) . . . ( x n − 1 , y n − 1 + y n − 1 ′ ) ) C{(x_0,y_0+y_0'),(x_1,y_1+y_1')...(x_{n-1},y_{n-1}+y_{n-1}'))} C(x0,y0+y0),(x1,y1+y1)...(xn1,yn1+yn1))

乘法计算效率也高:对两个点值表达的次数界为 n n n的多项式,计算只有 O ( n ) O(n) O(n)
如果 C ( x ) = A ( x ) ∗ b ( x ) C(x)=A(x)*b(x) C(x)=A(x)b(x),那么 C ( x k ) = A ( x k ) ∗ B ( x k ) C(x_k)=A(x_k)*B(x_k) C(xk)=A(xk)B(xk)
这样只需要将 A , B A,B A,B进行逐点相乘就可以求出了 C C C,但是 C C C的次数界要达到 2 n 2n 2n
A , B A,B A,B次数界也只有 n n n,所以我们必须对 A , B A,B A,B进行扩点处理,将其扩大成 C C C的次数界

更具体而言:扩充 A ( x 0 , y 0 ) , ( x 1 , y 1 ) . . . ( x 2 n − 1 , y 2 n − 1 ) ) , B ( x 0 , y 0 ′ ) , ( x 1 , y 1 ′ ) . . . ( x 2 n − 1 , y 2 n − 1 ′ ) ) A{(x_0,y_0),(x_1,y_1)...(x_{2n-1},y_{2n-1}))},B{(x_0,y_0'),(x_1,y_1')...(x_{2n-1},y_{2n-1}'))} A(x0,y0),(x1,y1)...(x2n1,y2n1)),B(x0,y0),(x1,y1)...(x2n1,y2n1))
C C C的点对就表示成 C ( x 0 , y 0 + y 0 ′ ) , ( x 1 , y 1 + y 1 ′ ) . . . ( x n − 1 , y 2 n − 1 + y 2 n − 1 ′ ) ) C{(x_0,y_0+y_0'),(x_1,y_1+y_1')...(x_{n-1},y_{2n-1}+y_{2n-1}'))} C(x0,y0+y0),(x1,y1+y1)...(xn1,y2n1+y2n1))

缺点
我们如何求一个新点的值呢?是不是只能转化成系数表达式,用 O ( n ) O(n) O(n)计算
但是时间复杂度就在转化这里达到了 O ( n 2 ) O(n^2) O(n2)

换言之:对于多项式 A ( x ) A(x) A(x) B ( x ) B(x) B(x),假设 d e g A + d e g B < n degA + degB < n degA+degB<n
deg是数学中的表示多项式的次数的玩意儿)
如果有 A A A B B B x 0 , x 1 , . . . , x n − 1 {x_0, x_1, . . . , x_{n-1}} x0,x1,...,xn1 处的点值表示
( A ⋅ B ) (A · B) (AB)的点值表示可以通过 ( A ⋅ B ) ( x i ) = A ( x i ) ⋅ B ( x i ) (A · B)(x_i) = A(x_i) · B(x_i) (AB)(xi)=A(xi)B(xi) O ( N ) O(N) O(N) 时间内得到
还原 ( A ⋅ B ) (A · B) (AB) 为系数表示就实现了多项式乘法,但是还原的时间 O ( n 2 ) O(n^2) O(n2)

🍔:所以如果有一道题给我们系数表达式,最后又让我们输出结果的系数表达式
我们用以上的方法虽然计算成点值表达式只用了 O ( n ) O(n) O(n)
但是最后在转化成系数表达式的时候,时间复杂度还是蹭蹭蹭地涨到了 O ( n 2 ) O(n^2) O(n2)
看上面的式子,我们会面临枚举 i , j i,j i,j的难题,还是没有在本质上解决问题


但是我们的 F F T FFT FFT就剋以做到以上的转化且只用 O ( n l o g n ) O(nlogn) O(nlogn)

1.把已知的一个多项式转化成对应的点值表示
2.把已知的点值表示转换成对应的多项式

说了这么多,还是没有告诉我怎么做啊!!!不急慢慢往下看
在这里插入图片描述


复数和单位复根

在这里插入图片描述

复数

我们把形如 z = a + b i z=a+bi z=a+bi(a,b均为实数)的数称为复数,其中 a a a称为实部 b b b称为虚部 i i i称为虚数单位
i = − 1 i=\sqrt{-1} i=1 ,即 i 2 = − 1 i^2=-1 i2=1

我们可以把复数当做一个向量丢在二维平面,即平面直角坐标系
在这里插入图片描述


百度百科说:复数之间的加减乘(除)是可以直接算的,除法因为不怎么用就不说了
在这里插入图片描述
1.加法法则
z 1 = a + b i , z 2 = c + d i z1=a+bi,z2=c+di z1=a+biz2=c+di是任意两个复数,
则它们的和是 ( a + b i ) + ( c + d i ) = ( a + c ) + ( b + d ) i (a+bi)+(c+di)=(a+c)+(b+d)i (a+bi)+(c+di)=(a+c)+(b+d)i
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和,当然复数的加法满足交换律和结合律


2.减法法则
z 1 = a + b i , z 2 = c + d i z1=a+bi,z2=c+di z1=a+biz2=c+di是任意两个复数,
则它们的差是 ( a + b i ) − ( c + d i ) = ( a − c ) + ( b − d ) i (a+bi)-(c+di)=(a-c)+(b-d)i (a+bi)(c+di)=(ac)+(bd)i
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差


3.乘法法则
z 1 = a + b i , z 2 = c + d i ( a 、 b 、 c 、 d ∈ R ) z1=a+bi,z2=c+di(a、b、c、d∈R) z1=a+biz2=c+di(abcdR)是任意两个复数,
那么它们的积 ( a + b i ) ( c + d i ) = ( a c − b d ) + ( b c + a d ) i (a+bi)(c+di)=(ac-bd)+(bc+ad)i (a+bi)(c+di)=(acbd)+(bc+ad)i
其实就是把两个复数相乘,类似两个多项式相乘,展开得: a c + a d i + b c i + b d i 2 ac+adi+bci+bdi^2 ac+adi+bci+bdi2,因为 i 2 = − 1 i^2=-1 i2=1,所以结果是 ( a c - b d ) + ( b c + a d ) i (ac-bd)+(bc+ad)i (acbd)+(bc+ad)i两个复数的积仍然是一个复数
此时,复数相乘表现为幅角相加,模长相乘

单位复根

定义 n n n次单位复根为 ω n i \omega_n^i ωni,满足 x n = 1 x^n=1 xn=1的复数 x x x,表现在平面直角坐标系中
在这里插入图片描述

单位复根满足的性质如下:可以想象成在单位圆上的旋转

ω n a ∗ ω n b = ω n a + b \omega_n^a*\omega_n^b=\omega_n^{a+b} ωnaωnb=ωna+b
ω n i = ω n i + n \omega_n^i=\omega_n^{i+n} ωni=ωni+n,也就是转了一圈单位圆最后在坐标系上只转了幅角为i
ω k n k i = ω n i \omega_{kn}^{ki}=\omega_n^i ωknki=ωni
ω n i = − ω n i + n / 2 \omega_n^i=-\omega_n^{i+n/2} ωni=ωni+n/2 − - 可以理解为倒着转

因为单位复根刚好有 n n n个,可以分别一一对应我们的 n − 1 n-1 n1次多项式,形成点值表达式

{ ( ω n 0 , f ( ω n 0 ) ) , ( ω n 1 , f ( ω n 1 ) ) , ( ω n 2 , f ( ω n 2 ) ) . . . , ( ω n n − 1 , f ( ω n n − 1 ) ) } \{(\omega_n^0,f(\omega_n^0)),(\omega_n^1,f(\omega_n^1)),(\omega_n^2,f(\omega_n^2))...,(\omega_n^{n-1},f(\omega_n^{n-1}))\} {(ωn0,f(ωn0)),(ωn1,f(ωn1)),(ωn2,f(ωn2))...,(ωnn1,f(ωnn1))}

在这里插入图片描述
我们的 F F T FFT FFT是要求 n n n为2的幂次的


  • Add
    对于一个函数 f ( n ) = ∑ i = 0 n − 1 c i   x i f(n)=\sum_{i=0}^{n-1}c_i\ x_i f(n)=i=0n1ci xi
    其实可以上调 n n n但不能下降 n n n
    意思就是可以将 n n n配成任何比 n n n大的 n ′ n' n,系数 c c c直接配成 0 0 0,不就行了?
    所以 F F T FFT FFT n n n的要求是完全可以人为调控达到的

所以像上图的五个单位复根
其实我们是分成了八个单位复根,然后就只用前五个
如图分成了八份,只用其中涂绿了的五份
在这里插入图片描述


  • Add
    前面提到是将复数当成向量放在二维平面的单位圆里
    所以对于单位圆上的一点,假设角度为 x x x,那么该点可以表示为 ( c o s   x , i   s i n   x ) (cos\ x,i\ sin\ x) (cos x,i sin x)
    对于两个角度分别为 x , y x,y x,y的在单位圆上的点,相乘
    ( c o s   x , i   s i n   x ) × ( c o s   y , i   s i n   y ) = (cos\ x,i\ sin\ x)\times (cos\ y,i\ sin\ y)= (cos x,i sin x)×(cos y,i sin y)=
    ( c o s   x   c o s   y − s i n   x   s i n   y , i ( s i n   x   c o s   y + c o s   x   s i n   y ) ) (cos\ x\ cos\ y-sin\ x\ sin\ y,i(sin\ x\ cos\ y+cos\ x\ sin\ y)) (cos x cos ysin x sin y,i(sin x cos y+cos x sin y))
    发现就是角度为 x + y x+y x+y的点坐标 ( c o s ( x + y ) , i   s i n ( x + y ) ) (cos(x+y),i\ sin(x+y)) (cos(x+y),i sin(x+y))
    这也恰恰应证了复数相乘表现为幅角相加,模长相乘
    点乘算出来的结果是一个点
    叉乘算出来的结果仍是一个向量

傅里叶正变换(一般形式 → \rightarrow 点值表达式)

理论


  • Add
    F F T FFT FFT就是知道用点值表达式表示函数

FFT 的正变换实现,是基于对多项式进行奇偶项分开递归再合并的分治进行的
对于 n − 1 n-1 n1 次多项式,我们选择插入 n n n 次单位根求出其点值表达式,
这就跟我们引入单位复根的原因相结合了

f ( x ) = a 0 + a 1 ∗ x 1 + a 2 ∗ x 2 + . . . + a n − 1 ∗ x n − 1 f(x)=a_0+a_1*x^1+a_2*x^2+...+a_{n-1}*x^{n-1} f(x)=a0+a1x1+a2x2+...+an1xn1
f 0 ( x ) = a 0 + a 2 ∗ x + a 4 ∗ x 2 + a 6 ∗ x 3 + . . . f_0(x)=a_0+a_2*x+a_4*x^2+a_6*x^3+... f0(x)=a0+a2x+a4x2+a6x3+... f 1 ( x ) = a 1 + a 3 ∗ x + a 5 ∗ x 2 + . . . f_1(x)=a_1+a_3*x+a_5*x^2+... f1(x)=a1+a3x+a5x2+...
f ( x ) = f 0 ( x 2 ) + x ∗ f 1 ( x 2 ) f(x)=f_0(x^2)+x*f_1(x^2) f(x)=f0(x2)+xf1(x2)
证明的话把这个式子展开就行了,跳过

也就是说我们把 f ( x ) f(x) f(x)分成了两类,奇数项分成一类,偶数项分成一类,去得到上列公式

接着,令 n = 2 ∗ p n=2*p n=2p,那么就有以下转化
f ( ω n i ) = f 0 ( ( ω n / 2 i / 2 ) 2 ) + ω n i ∗ f 1 ( ( w n / 2 i / 2 ) 2 ) = f 0 ( ω p i ) + ω n i ∗ f 1 ( ω p i ) f(\omega_n^i)=f_0((\omega_{n/2}^{i/2})^2)+\omega_n^i*f1((w_{n/2}^{i/2})^2)=f_0(\omega_p^i)+\omega_n^i*f_1(\omega_p^i) f(ωni)=f0((ωn/2i/2)2)+ωnif1((wn/2i/2)2)=f0(ωpi)+ωnif1(ωpi)
f ( ω n i + p ) = f 0 ( ( ω n / 2 ( i + p ) / 2 ) 2 ) + ω n i + p ∗ f 1 ( ( w n / 2 ( i + p ) / 2 ) 2 ) f(\omega_n^{i+p})=f_0((\omega_{n/2}^{(i+p)/2})^2)+\omega_n^{i+p}*f1((w_{n/2}^{(i+p)/2})^2) f(ωni+p)=f0((ωn/2(i+p)/2)2)+ωni+pf1((wn/2(i+p)/2)2) = f 0 ( ω p i + p ) + ω n i + p ∗ f 1 ( ω p i + p ) = f 0 ( ω p i ) − ω n i ∗ f 1 ( ω p i ) =f_0(\omega_p^{i+p})+\omega_n^{i+p}*f_1(\omega_p^{i+p})=f_0(\omega_p^i)-\omega_n^i*f_1(\omega_p^i) =f0(ωpi+p)+ωni+pf1(ωpi+p)=f0(ωpi)ωnif1(ωpi)
在这里插入图片描述
由上述式子我们可以知道,如果我们知道 f 0 ( ω p i ) , f 1 ( ω p i ) f_0(\omega_p^i),f_1(\omega_p^i) f0(ωpi),f1(ωpi),我们就可以 O ( 1 ) O(1) O(1)算出 f ( ω n i ) , f ( ω n i + n / 2 ) f(\omega_n^i),f(\omega_n^{i+n/2}) f(ωni),f(ωni+n/2)
那么如果我们递归求出了 f 0 ( x ) , f 1 ( x ) f_0(x),f_1(x) f0(x),f1(x) n / 2 n/2 n/2次的插值,我们就能 O ( n ) O(n) O(n)的算出 f ( x ) f(x) f(x) n n n次单位根的插值,所以时间复杂度则是 O ( n l o g n ) O(nlogn) O(nlogn)

一言以蔽之:当 x x x 取遍所有 n n n 次单位复根时, x 2 x^2 x2 取遍所有 ( n / 2 ) (n/2) (n/2) 次单位复根

递归模板

struct complex {//先自己手打STL里面的复数,可以防止某些**卡常
	double real, i;
	complex () {}
	complex ( double xx, double yy ) {
		real = xx;
		i = yy;
	}
}a[MAXN], b[MAXN];

complex operator + ( complex s, complex t ) {
	return complex ( s.real + t.real, s.i + t.i );
}
complex operator - ( complex s, complex t ) {
	return complex ( s.real - t.real, s.i - t.i );
}
complex operator * ( complex s, complex t ) {
	return complex ( s.real * t.real - s.i * t.i, s.real * t.i + s.i * t.real );
}
const double pi = acos ( -1.0 );

void FFT ( int limit, complex *a, int inv ) {
	if ( limit == 1 )
		return;
	complex a1[limit >> 1], a2[limit >> 1];
	for ( int i = 0;i < limit;i += 2 ) {
		a1[i >> 1] = a[i];
		a2[i >> 1] = a[i + 1];
	}
	FFT ( limit >> 1, a1, inv );
	FFT ( limit >> 1, a2, inv );
	complex w = complex ( cos ( 2 * pi / limit ), inv * sin ( 2 * pi / limit ) ), p = complex ( 1, 0 );
	for ( int i = 0;i < ( limit >> 1 );i ++, p = p * w ) {
		a[i] = a1[i] + p * a2[i];
		a[i + ( limit >> 1)] = a1[i] - p * a2[i];
	}
}

傅里叶逆变换(点值表达式–>一般形式)

其实正变换的实现就是下列的矩阵相乘,反正我是没看出来
[   ( ω n 0 ) 0 ( ω n 0 ) 1 . . . ( ω n 0 ) n − 1 ( ω n 1 ) 0 ( ω n 1 ) 1 . . . ( ω n 1 ) n − 1 . . . . . . . . . . . . ( ω n n − 1 ) 0 ( ω n n − 1 ) 1 . . . ( ω n n − 1 ) n − 1 ] × [   a 0   a 1   a 2   .   .   .   a n − 1 ] = [   f ( w n 0 )   f ( w n 1 )   f ( w n 2 )   .   .   .   f ( w n n − 1 ) ] \begin{bmatrix} \ (\omega_n^0)^0 & (\omega_n^0)^1 & ... &(\omega_n^0)^{n-1} \\ \\ (\omega_n^1)^0 & (\omega_n^1)^1 & ... & (\omega_n^1)^{n-1} \\ \\.&.&...&. \\.&.&...&. \\ (\omega_n^{n-1})^0 & (\omega_n^{n-1})^1 & ... & (\omega_n^{n-1})^{n-1} \\ \end{bmatrix} \times \begin{bmatrix} \ a_0 \\ \ a_1\\ \ a_2 \\ \ .\\ \ .\\ \ .\\ \ a_{n-1} \end{bmatrix} = \begin{bmatrix} \ f(w_n^0) \\ \ f(w_n^1) \\ \ f(w_n^2)\\ \ . \\ \ . \\ \ . \\ \ f(w_n^{n-1}) \\ \end{bmatrix}  (ωn0)0(ωn1)0..(ωnn1)0(ωn0)1(ωn1)1..(ωnn1)1...............(ωn0)n1(ωn1)n1..(ωnn1)n1× a0 a1 a2 . . . an1= f(wn0) f(wn1) f(wn2) . . . f(wnn1)


  • Add
    快速傅里叶逆变化 I F F T IFFT IFFT,将点值表达式转换为系数表达式
    一般都是用的系数表达式

矩阵相乘的第i行第j列等于
求和第一个矩阵的第i行的每一个数和第二个矩阵的第j列的每一个数的乘积

我们记 V V V就为(系数矩阵)上列的第一个矩阵,接下来再定义一个矩阵 D D D
D = [   ( ω n − 0 ) 0 ( ω n − 0 ) 1 . . . ( ω n − 0 ) n − 1 ( ω n − 1 ) 0 ( ω n − 1 ) 1 . . . ( ω n − 1 ) n − 1 . . . . . . . . . . . . ( ω n − n + 1 ) 0 ( ω n − n + 1 ) 1 . . . ( ω n − n + 1 ) n − 1 ] D= \begin{bmatrix} \ (\omega_n^{-0})^0 & (\omega_n^{-0})^1 & ... &(\omega_n^{-0})^{n-1} \\ \\ (\omega_n^{-1})^0 & (\omega_n^{-1})^1 & ... & (\omega_n^{-1})^{n-1} \\ \\.&.&...&. \\.&.&...&. \\ (\omega_n^{-n+1})^0 & (\omega_n^{-n+1})^1 & ... & (\omega_n^{-n+1})^{n-1} \\ \end{bmatrix} D= (ωn0)0(ωn1)0..(ωnn+1)0(ωn0)1(ωn1)1..(ωnn+1)1...............(ωn0)n1(ωn1)n1..(ωnn+1)n1
在这里插入图片描述


那么计算矩阵 D ∗ V D*V DV i , j i,j i,j项,分为两种情况
①: i = j i=j i=j,(任何数除零外的零次方都为1)
( D ∗ V ) i , j = ∑ k = 0 n − 1 D i , k ∗ V k , j = ∑ k = 0 n − 1 ω n − i k ∗ ω n j k = ∑ k = 0 n − 1 ω n ( j − i ) k = ∑ k = 0 n − 1 ω n 0 = n (D*V)_{i,j}=\sum_{k=0}^{n-1}D_{i,k}*V_{k,j}=\sum_{k=0}^{n-1}\omega_n^{-ik}*\omega_n^{jk}=\sum_{k=0}^{n-1}\omega_n^{(j-i)k}=\sum_{k=0}^{n-1}\omega_n^0=n (DV)i,j=k=0n1Di,kVk,j=k=0n1ωnikωnjk=k=0n1ωn(ji)k=k=0n1ωn0=n
②: i ≠ j i\ne j i=j
( D ∗ V ) i , j = ∑ k = 0 n − 1 D i , k ∗ V k , j = ∑ k = 0 n − 1 ω n − i k ∗ ω n j k = ∑ k = 0 n − 1 ω n ( j − i ) k (D*V)_{i,j}=\sum_{k=0}^{n-1}D_{i,k}*V_{k,j}=\sum_{k=0}^{n-1}\omega_n^{-ik}*\omega_n^{jk}=\sum_{k=0}^{n-1}\omega_n^{(j-i)k} (DV)i,j=k=0n1Di,kVk,j=k=0n1ωnikωnjk=k=0n1ωn(ji)k
= ( ω n j − i ) 0 + ( ω n j − i ) 1 + ( ω n j − i ) 2 + . . . + ( ω n j − i ) n − 1 =(\omega_n^{j-i})^0+(\omega_n^{j-i})^1+(\omega_n^{j-i})^2+...+(\omega_n^{j-i})^{n-1} =(ωnji)0+(ωnji)1+(ωnji)2+...+(ωnji)n1
发现这个公式是一个以 ω n j − 1 \omega_n^{j-1} ωnj1为公比的等比数列,
在这里插入图片描述
在这里插入图片描述
那么就可以转换为
( ω n j − i ) 0 − ( ω n j − i ) 1 ∗ ( ω n j − i ) n − 1 1 − ( ω n j − i ) 1 = 1 − ( ω n j − i ) n 1 − ω n j − i = 0 1 − ω n j − i = 0 \frac{(\omega_n^{j-i})^0-(\omega_n^{j-i})^1*(\omega_n^{j-i})^{n-1}}{1-(\omega_n^{j-i})^1}=\frac{1-(\omega_n^{j-i})^n}{1-\omega_n^{j-i}}=\frac{0}{1-\omega_n^{j-i}}=0 1(ωnji)1(ωnji)0(ωnji)1(ωnji)n1=1ωnji1(ωnji)n=1ωnji0=0
单位复根的 n n n次方 = 0 =0 =0,见上文单位复根定义
因为此公式的前提是 j ≠ i j\ne i j=i,所以分母一定不为 0 0 0

j ≠ i j\ne i j=i时, ( D ∗ V ) i , j = 0 (D*V)_{i,j}=0 (DV)i,j=0


D ∗ V ∗ f D*V*f DVf去转换为点值表达式,去带最上面的这一板块的公式,你会惊讶地发现
[   ( ω n − 0 ) 0 ( ω n − 0 ) 1 . . . ( ω n − 0 ) n − 1 ( ω n − 1 ) 0 ( ω n − 1 ) 1 . . . ( ω n − 1 ) n − 1 . . . . . . . . . . . . ( ω n − n + 1 ) 0 ( ω n − n + 1 ) 1 . . . ( ω n − n + 1 ) n − 1 ] × [   ( ω n 0 ) 0 ( ω n 0 ) 1 . . . ( ω n 0 ) n − 1 ( ω n 1 ) 0 ( ω n 1 ) 1 . . . ( ω n 1 ) n − 1 . . . . . . . . . . . . ( ω n n − 1 ) 0 ( ω n n − 1 ) 1 . . . ( ω n n − 1 ) n − 1 ] × [   f ( w n 0 )   f ( w n 1 )   f ( w n 2 )   .   .   .   f ( w n n − 1 ) ] = \begin{bmatrix} \ (\omega_n^{-0})^0 & (\omega_n^{-0})^1 & ... &(\omega_n^{-0})^{n-1} \\ \\ (\omega_n^{-1})^0 & (\omega_n^{-1})^1 & ... & (\omega_n^{-1})^{n-1} \\ \\.&.&...&. \\.&.&...&. \\ (\omega_n^{-n+1})^0 & (\omega_n^{-n+1})^1 & ... & (\omega_n^{-n+1})^{n-1} \\ \end{bmatrix} \times \begin{bmatrix} \ (\omega_n^0)^0 & (\omega_n^0)^1 & ... &(\omega_n^0)^{n-1} \\ \\ (\omega_n^1)^0 & (\omega_n^1)^1 & ... & (\omega_n^1)^{n-1} \\ \\.&.&...&. \\.&.&...&. \\ (\omega_n^{n-1})^0 & (\omega_n^{n-1})^1 & ... & (\omega_n^{n-1})^{n-1} \\ \end{bmatrix} \times \begin{bmatrix} \ f(w_n^0) \\ \ f(w_n^1) \\ \ f(w_n^2)\\ \ . \\ \ . \\ \ . \\ \ f(w_n^{n-1}) \\ \end{bmatrix} =  (ωn0)0(ωn1)0..(ωnn+1)0(ωn0)1(ωn1)1..(ωnn+1)1...............(ωn0)n1(ωn1)n1..(ωnn+1)n1× (ωn0)0(ωn1)0..(ωnn1)0(ωn0)1(ωn1)1..(ωnn1)1...............(ωn0)n1(ωn1)n1..(ωnn1)n1× f(wn0) f(wn1) f(wn2) . . . f(wnn1)=
[   n 0 0 . . . 0   0 n 0 . . . 0   0 0 n . . 0   . . . . . . . . . . . . 0   0 0 0 . . . n ] × [   f ( w n 0 )   f ( w n 1 )   f ( w n 2 )   .   .   .   f ( w n n − 1 ) ] = [   n ∗ a 0   n ∗ a 1   n ∗ a 2   .   .   .   n ∗ a n − 1 ] \begin{bmatrix} \ n&0&0&...&0 \\ \ 0&n&0&...&0 \\ \ 0 &0&n&..&0\\ \ ...&...&...&... &0\\ \ 0&0&0&...&n \\ \end{bmatrix} \times \begin{bmatrix} \ f(w_n^0) \\ \ f(w_n^1) \\ \ f(w_n^2)\\ \ . \\ \ . \\ \ . \\ \ f(w_n^{n-1}) \\ \end{bmatrix} = \begin{bmatrix} \ n*a_0 \\ \ n*a_1\\ \ n*a_2 \\ \ .\\ \ .\\ \ .\\ \ n*a_{n-1} \end{bmatrix}  n 0 0 ... 00n0...000n...0..............0000n× f(wn0) f(wn1) f(wn2) . . . f(wnn1)= na0 na1 na2 . . . nan1
所以最后对答案全部 / n /n /n就是点值表达式了,这也是为什么我们为这么定义 D , V D,V D,V

逆变换就相当于把正变换过程中的 ω n k \omega^k_n ωnk换成 w n − k w^{-k}_n wnk,之后结果除以n就可以了——摘自某dalao博客

在这里插入图片描述

离散傅里叶变换实现

在这里插入图片描述

理论

之前的思路全都是递归思想,实现出来后发现吓死个人,所以我们考虑转成迭代
以下的图摘自学长大佬:
在这里插入图片描述
学长让我们换成二进制看看:
在这里插入图片描述

可以发现终序列是原序列每个元素的翻转。
于是我们可以先把要变换的系数排在相邻位置,从下往上迭代。
在这里给出一个参考的方法:
我们对于每个 i,假设已知 i-1 的翻转为 j。考虑不进行翻转的二进制加法怎么进行:从最低位开始,找到第一个为 0 的二进制位,将它之前的 1 变为 0,将它自己变为 1。因此我们可以从 j 的最高位开始,倒过来进行这个过程
——摘自某dalao的博主

所以我们才会把这个 F F T FFT FFT跟蝴蝶操作搞在一起,盗一波百度的图片
在这里插入图片描述

模板

void FFT ( complex *c, int f ) {
	for ( int i = 0;i < len;i ++ )
		if ( i < r[i] )
			swap ( c[i], c[r[i]] );
	for ( int i = 1;i < len;i <<= 1 ) {
		complex omega ( cos ( pi / i ), f * sin ( pi / i ) );
		for ( int j = 0;j < len;j += ( i << 1 ) ) {
			complex w ( 1, 0 );
			for ( int k = 0;k < i;k ++, w = w * omega ) {
				complex x = c[j + k], y = w * c[j + k + i];
				c[j + k] = x + y;
				c[i + j + k] = x - y;
			}
		}
	}
}

模板的板题运用

例题:洛谷P3803【模板】多项式乘法(FFT)

题目

递归版CODE

#include <cmath>
#include <cstdio>
using namespace std;
#define MAXN 3000005
struct complex {
	double real, i;
	complex () {}
	complex ( double xx, double yy ) {
		real = xx;
		i = yy;
	}
}a[MAXN], b[MAXN];

complex operator + ( complex s, complex t ) {
	return complex ( s.real + t.real, s.i + t.i );
}
complex operator - ( complex s, complex t ) {
	return complex ( s.real - t.real, s.i - t.i );
}
complex operator * ( complex s, complex t ) {
	return complex ( s.real * t.real - s.i * t.i, s.real * t.i + s.i * t.real );
}

const double pi = acos ( -1.0 );

void FFT ( int limit, complex *a, int inv ) {
	if ( limit == 1 )
		return;
	complex a1[limit >> 1], a2[limit >> 1];
	for ( int i = 0;i < limit;i += 2 ) {
		a1[i >> 1] = a[i];
		a2[i >> 1] = a[i + 1];
	}
	FFT ( limit >> 1, a1, inv );
	FFT ( limit >> 1, a2, inv );
	complex w = complex ( cos ( 2 * pi / limit ), inv * sin ( 2 * pi / limit ) ), p = complex ( 1, 0 );
	for ( int i = 0;i < ( limit >> 1 );i ++, p = p * w ) {
		a[i] = a1[i] + p * a2[i];
		a[i + ( limit >> 1)] = a1[i] - p * a2[i];
	}
}

int main() {
	int n, m;
	scanf ( "%d %d", &n, &m );
	for ( int i = 0;i <= n;i ++ )
		scanf ( "%lf", &a[i].real );
	for ( int i = 0;i <= m;i ++ )
		scanf ( "%lf", &b[i].real );
	int limit = 1;
	while ( limit <= n + m )
		limit <<= 1; 
	FFT ( limit, a, 1 );
	FFT ( limit, b, 1 );
	for ( int i = 0;i <= limit;i ++ )
		a[i] = a[i] * b[i];
	FFT ( limit, a, -1 );
	for ( int i = 0;i <= n + m;i ++ )
		printf ( "%d ", ( int ) ( a[i].real / limit + 0.5 ) );
	return 0;
}

迭代版CODE

推荐使用递推版,要比递归版快

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
#define maxn 3000005
struct complex {
	double x, i;
	complex(){}
	complex( double X, double I ) {
		x = X, i = I;
	}
}A[maxn], B[maxn];
int len = 1;
int r[maxn];

double pi = acos( -1.0 );

complex operator + ( complex a, complex b ) {
	return complex( a.x + b.x, a.i + b.i );
}

complex operator - ( complex a, complex b ) {
	return complex( a.x - b.x, a.i - b.i );
}

complex operator * ( complex a, complex b ) {
	return complex( a.x * b.x - a.i * b.i, a.x * b.i + a.i * b.x );
}

void FFT( complex *c, int f ) { //f=1系数转化为点值表达式w^1  f=-1点值转化为系数表达式w^(-1)
/*
蝴蝶发现:终序列是原序列每个元素二进制的翻转 
*/ 
	for( int i = 0;i < len;i ++ )
		if( i < r[i] ) swap( c[i], c[r[i]] ); 
	for( int i = 1;i < len;i <<= 1 ) { //枚举迭代区间长度的一半 
		complex omega( cos( pi / i ), f * sin( pi / i ) );//区间长度本来是2i 就是要分成2i份 每一份是2pi/2i=pi/i 
		for( int j = 0;j < len;j += ( i << 1 ) ) {//枚举每一次迭代区间的开头
			complex w( 1, 0 );
			for( int k = 0;k < i;k ++, w = w * omega ) {
/*
只枚举迭代区间的左半部分
左半部分和右半部分进行计算
就可以算出上一层 直接覆盖即可
(w^k)^2=[w^(k+n/2)]^2 
左半部分是按照偶数分类
右半部分是按照奇数分类
f(x)=x*f1(x^2)+f2(x^2)
f1是奇数分类 f2是偶数分类 
*/ 
				complex x = c[j + k], y = w * c[j + k + i];
				c[j + k] = x + y;
				c[j + k + i] = x - y;
			}
		}
	}
}

int main() {
	int n, m;
	scanf( "%d %d", &n, &m );
	for( int i = 0;i <= n;i ++ )
		scanf( "%lf", &A[i].x );
	for( int i = 0;i <= m;i ++ )
		scanf( "%lf", &B[i].x );
	int l = 0;
	while( len <= n + m ) {
		len <<= 1;
		l ++;
	}
	for( int i = 0;i < len;i ++ )
		r[i] = ( r[i >> 1] >> 1 ) | ( ( i & 1 ) << ( l - 1 ) );
/*
在原序列中i与i/2的关系是:i可以看做是i/2的二进制上的每一位左移一位得来
那么在反转后的数组中就需要右移一位
因为i直接左移一位
那么i二进制的右边第一位是没有考虑到的
那么如果那一位是1
反转后就应该是最高位为1 
*/
	FFT( A, 1 ); 
	FFT( B, 1 );
	for( int i = 0;i < len;i ++ )
		A[i] = A[i] * B[i];
	FFT( A, -1 );
	for( int i = 0;i <= n + m;i ++ )
		printf( "%d ", int( A[i].x / len + 0.5 ) );
	return 0;
}

在这里插入图片描述
给个版权吧:以上内容部分学习于

https://www.cnblogs.com/Tiw-Air-OAO/p/10162034.html
学校的lucky学长(没找到blog)
老师专讲
叉姐

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值