生成函数化简技巧

一些重要式子

  • ∑ i = 0 ∞ x i = 1 1 − x \sum_{i=0}^{\infty}x^i=\frac{1}{1-x} i=0xi=1x1
    推论:
    1 1 − a x = ∑ i = 0 ∞ a i x i \frac{1}{1-ax}=\sum_{i=0}^{\infty}a^ix^i 1ax1=i=0aixi
    1 1 − x k = ∑ i = 0 ∞ x i k \frac{1}{1-x^k}=\sum_{i=0}^{\infty}x^{ik} 1xk1=i=0xik
    1 1 − c x k = ∑ i = 0 ∞ c i x i k \frac{1}{1-cx^k}=\sum_{i=0}^{\infty}c^ix^{ik} 1cxk1=i=0cixik

  • ( 1 − x ) n = ∑ i = 0 n ( − 1 ) i ( n i ) x i (1-x)^n=\sum_{i=0}^{n}(-1)^i\dbinom{n}{i}x^i (1x)n=i=0n(1)i(in)xi

  • 1 ( 1 − x c ) k = ( ∑ i = 0 ∞ x i c ) k = ∑ i = 0 ∞ ( i + k − 1 k − 1 ) x i c = ∑ i = 0 ∞ ( i + k − 1 i ) x i c \frac{1}{(1-x^c)^k}=(\sum_{i=0}^{\infty}x^{ic})^k=\sum_{i=0}^{\infty}\dbinom{i+k-1}{k-1}x^{ic}=\sum_{i=0}^{\infty}\dbinom{i+k-1}{i}x^{ic} (1xc)k1=(i=0xic)k=i=0(k1i+k1)xic=i=0(ii+k1)xic

  • ∑ i = 1 ∞ x i i = ln ⁡ 1 1 − x = − ln ⁡ ( 1 − x ) \sum_{i=1}^{\infty}\frac{x^i}{i}=\ln \frac{1}{1-x}=-\ln (1-x) i=1ixi=ln1x1=ln(1x)

  • ∑ i = 0 ∞ x i i ! = e x \sum_{i=0}^{\infty}\frac{x^i}{i!}=e^x i=0i!xi=ex
    推论:
    e c x = ∑ i = 0 ∞ c i x i i ! e^{cx}=\sum_{i=0}^{\infty}\frac{c^ix^i}{i!} ecx=i=0i!cixi
    e − x = ∑ i = 0 ∞ ( − 1 ) i x i i ! e^{-x}=\sum_{i=0}^{\infty}\frac{(-1)^ix^i}{i!} ex=i=0i!(1)ixi
    e x + e − x 2 = ∑ i = 0 ∞ [ 2 ∣ i ] x i i ! \frac{e^x+e^{-x}}{2}=\sum_{i=0}^{\infty}[2|i]\frac{x^i}{i!} 2ex+ex=i=0[2i]i!xi
    单位根反演

  • ( 1 + x ) a = ∑ i = 0 ∞ a i ‾ x i i ! (1+x)^a=\sum_{i=0}^{\infty}a^{\underline{i}}\frac{x^i}{i!} (1+x)a=i=0aii!xi

构造幂级数的小技巧

  • 平移:
    在这里插入图片描述
  • 拉伸:
    在这里插入图片描述

常系数其次线性递推

一二阶线性递推数列通项的求法

假设对于数列 F F F和递推系数 C C C,当 n ≥ k n\geq k nk时有 ∑ i = 0 k C [ i ] F [ n − i ] = 0 \sum_{i=0}^{k}C[i]F[n-i]=0 i=0kC[i]F[ni]=0,则称 F F F满足 ( k k k阶 ) 线性常系数递推关系。

F ( x ) F(x) F(x) F [ n ] F[n] F[n] O G F OGF OGF

考虑构造 F t ( x ) F_t(x) Ft(x),令 [ x n ] F t ( x ) = [ n ≥ k ] C [ t ] F [ n − t ] [x^n]F_t(x)=[n\geq k]C[t]F[n-t] [xn]Ft(x)=[nk]C[t]F[nt],则 F t ( x ) = C [ t ] x t ∑ i = k − t ∞ F [ i ] x i = C [ t ] x t ( F ( x ) − ∑ i = 0 k − t − 1 F [ i ] x i ) F_t(x)=C[t]x^t\sum_{i=k-t}^{\infty}F[i]x^i=C[t]x^t(F(x)-\sum_{i=0}^{k-t-1}F[i]x^i) Ft(x)=C[t]xti=ktF[i]xi=C[t]xt(F(x)i=0kt1F[i]xi)

[ n ≥ k ] ∑ i = 0 k C [ i ] F [ n − i ] = 0 [n\geq k]\sum_{i=0}^{k}C[i]F[n-i]=0 [nk]i=0kC[i]F[ni]=0 知, ∑ t = 0 k F t ( x ) = 0 \sum_{t=0}^{k}F_t(x)=0 t=0kFt(x)=0,即
∑ t = 0 k C [ t ] x t ( F ( x ) − ∑ i = 0 k − t − 1 F [ i ] x i ) = 0 \sum_{t=0}^{k}C[t]x^t(F(x)-\sum_{i=0}^{k-t-1}F[i]x^i)=0 t=0kC[t]xt(F(x)i=0kt1F[i]xi)=0
( ∑ t = 0 k C [ t ] x t ) F ( x ) = ∑ t = 0 k − 1 C [ t ] x t ∑ i = 0 k − t − 1 F [ i ] x i (\sum_{t=0}^{k}C[t]x^t)F(x)=\sum_{t=0}^{k-1}C[t]x^t\sum_{i=0}^{k-t-1}F[i]x^i (t=0kC[t]xt)F(x)=t=0k1C[t]xti=0kt1F[i]xi
能够发现左侧出现了一次 C C C的生成函数,设为 C ( x ) C(x) C(x)。右侧的余项,次数小于 k k k,设为 P ( x ) P(x) P(x)

则得到 C ( x ) F ( x ) = P ( x ) C(x)F(x)=P(x) C(x)F(x)=P(x),即 F ( x ) = P ( x ) C ( x ) F(x)=\frac{P(x)}{C(x)} F(x)=C(x)P(x)

分式分解

这里介绍的是作用类似的代替品。

考虑找出 k , p k,p k,p 使得 C ( x ) ∣ ( 1 − x k ) p C(x)∣(1-x^k)^p C(x)(1xk)p,记 A ( x ) = ( 1 − x k ) p C ( x ) A(x)=\frac{(1-x^k)^p}{C(x)} A(x)=C(x)(1xk)p

F ( x ) = A ( x ) P ( x ) ( 1 − x k ) p F(x)=\frac{A(x)P(x)}{(1-x^k)^p} F(x)=(1xk)pA(x)P(x) A ( x ) P ( x ) A(x)P(x) A(x)P(x) ( 1 − x k ) p (1−x^k)^p (1xk)p 的卷积是容易被表示的。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值