前缀和 & 差分

OI-WIKI
前缀和方便查询区间和,差分方便进行区间修改

一维

前缀和
s [ i ] = s [ i − 1 ] + a [ i ]        i ≥ 2 s[i]=s[i-1]+a[i]\ \ \ \ \ \ i\geq2 s[i]=s[i1]+a[i]      i2
s [ i ] = a [ i ]         i = 1 s[i]=a[i]\ \ \ \ \ \ \ i=1 s[i]=a[i]       i=1
查询区间 [ l , r ] [l,r] [l,r] a [ i ] a[i] a[i]和: s [ r ] − s [ l − 1 ] s[r]-s[l-1] s[r]s[l1]

差分
a [ i ] = s [ i ] − s [ i − 1 ]        i ≥ 2 a[i]=s[i]-s[i-1]\ \ \ \ \ \ i\geq2 a[i]=s[i]s[i1]      i2
a [ i ] = s [ i ]         i = 1 a[i]=s[i]\ \ \ \ \ \ \ i=1 a[i]=s[i]       i=1
区间 [ l , r ] [l,r] [l,r] s [ i ] s[i] s[i]均加 v v v a [ l ] + = v a[l]+=v a[l]+=v a [ r + 1 ] − = v a[r+1]-=v a[r+1]=v

前缀和的前缀和
s [ i ] = s [ i − 1 ] + a [ i ]        i ≥ 2 s[i]=s[i-1]+a[i]\ \ \ \ \ \ i\geq2 s[i]=s[i1]+a[i]      i2
s [ i ] = a [ i ]         i = 1 s[i]=a[i]\ \ \ \ \ \ \ i=1 s[i]=a[i]       i=1
s u m [ i ] = s u m [ i − 1 ] + s [ i ]        i ≥ 2 sum[i]=sum[i-1]+s[i]\ \ \ \ \ \ i\geq2 sum[i]=sum[i1]+s[i]      i2
s u m [ i ] = s [ i ]         i = 1 sum[i]=s[i]\ \ \ \ \ \ \ i=1 sum[i]=s[i]       i=1
s u m [ n ] = ∑ i = 1 n s [ i ] = ∑ i = 1 n ( n − i + 1 ) a [ i ] sum[n]=\sum_{i=1}^{n}s[i]=\sum_{i=1}^{n}(n-i+1)a[i] sum[n]=i=1ns[i]=i=1n(ni+1)a[i]

二维

容斥原理
定义 s x , y = ∑ i = 1 x ∑ j = 1 y a i , j s_{x,y}=\sum_{i=1}^{x}\sum_{j=1}^{y}a_{i,j} sx,y=i=1xj=1yai,j
s x , y = s x − 1 , y + s x , y − 1 − s x − 1 , y − 1 + a x , y s_{x,y}=s_{x-1,y}+s_{x,y-1}-s_{x-1,y-1}+a_{x,y} sx,y=sx1,y+sx,y1sx1,y1+ax,y
在这里插入图片描述
前缀和
求矩形的 a a a值和: s c , d − s c , b − 1 − s a − 1 , d + s a − 1 , b − 1 s_{c,d}-s_{c,b-1}-s_{a-1,d}+s_{a-1,b-1} sc,dsc,b1sa1,d+sa1,b1

差分
矩形的 s s s值均价 v v v a a , b + = v a_{a,b}+=v aa,b+=v a c + 1 , b − = v a_{c+1,b}-=v ac+1,b=v a a , d + 1 − = v a_{a,d+1}-=v aa,d+1=v s c + 1 , d + 1 + = v s_{c+1,d+1}+=v sc+1,d+1+=v

高维前缀和与SOS DP

https://zhuanlan.zhihu.com/p/651143987
https://www.cnblogs.com/KellyWLJ/p/18015746
[CF165E Compatible Numbers]
[CF383E Vowels]

树上

前缀和
s [ u ] s[u] s[u] u u u到根路径上的 a a a值和
查询某树上路径的 a a a值和
分为点前缀和 和 边前缀和

差分
s [ u ] s[u] s[u] u u u的子树内的 a a a值和
修改某树上路径的 s s s
分为点差分 和 树差分

[刷题笔记]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值