UVA10635 Prince and Princess(LCS转化成LIS)

Description

给你两条路径,对于每条路径上的点各不相同,请你求出两条路径最长公共部分的长度。 Input

第一行是数据组数t 每组数据的第一行包含三个数,n,p,q。其中路径上的点的大小不会超过n^2. 第二行包含p+1个数,表示第一条路径 第三行包含q+1个数,表示第二条路径。 Output见样例。输出最长路径长度。
将A中元素重新标号,例如,样例中
A={1,7,5,4,8,3,9},
B={1,4,3,5,6,2,8,9}
因此把 A 重新编号为{1,2,3,4,5,6,7} ,则 B 就是{ 1,4,6,3,0,0,5, 7} .
所以B中的任意一个最长递增子序列都是A和B的公共子序列,所以问题便转换成了一个求解最长递增子序列的问题。而且因为p,q高达62500,要用nlogn的算法求解

#include<bits/stdc++.h>
using namespace std;
const int N=1e5;
int t,n,p,q,len,a[N],b[N],tot,c[N],index_,saber,num[N],d[N],cnt;
int main()
{
	cin>>t;
	while(t--)
	{
		saber=tot=0;
		memset(num,0,sizeof(num));
		scanf("%d%d%d",&n,&p,&q);
		for(int i=1;i<=p+1;i++) scanf("%d",&a[i]),num[a[i]]=i;
	    for(int i=1;i<=q+1;i++)
	    {
	    	scanf("%d",&b[i]);
	    	if(num[b[i]])
	    	{
	    		tot++;
	    		c[tot]=num[b[i]];
	    	}
	    }
	    saber=1;
	    d[1]=c[1];
	    for(int i=2;i<=tot;i++)
	    {
	    	if(c[i]>d[saber])
	        d[++saber]=c[i];
	        else
	        {
	        	index_=lower_bound(d+1,d+saber+1,c[i])-d;
	        	d[index_]=c[i];
	        }
	    }
	    cout<<"Case "<<++cnt<<": ";
	    cout<<saber<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值