numpy教程

本文详细介绍了numpy教程中的数组定义、创建、类型判断、切片与拼接,以及使用sklearn进行数据普通编码的过程,包括LabelEncoder应用和自定义编码方法的性能对比。作者呼吁读者提供优化建议。
摘要由CSDN通过智能技术生成

第一章 数组定义和分类

第二章 数组操作

2.1 创建数组

2.2 数组类型

2.3 数组判断

2.4 数组切片

2.5 数组拼接

第三章 数组应用

3.1 数据普通编码

1. 数据下载地址

https://archive.ics.uci.edu/static/public/73/mushroom.zip

2. 数据加载

import pandas as pd
f_path = r"../../datasets/mushroom/raw_data/agaricus-lepiota.data"
data = pd.read_csv(f_path, header=None)

3. 数据普通编码
1) 使用sklearn进行普通编码

from sklearn.preprocessing import LabelEncoder

start = time.time()

le = LabelEncoder()
for column_name, column_data in data.items():
    le.fit(column_data)
    data.loc[:, column_name] = le.transform(column_data)

print(time.time() - start)

2) 去掉校验后,sklearn内部代码

def _map_to_integer(values, uniques):
    """Map values based on its position in uniques."""
    table = {val: i for i, val in enumerate(uniques)}
    return np.array([table[v] for v in values])

start2 = time.time()

data = np.asarray(data)
for i in range(data.shape[1]):
    temp = data[:, i]
    classes = np.unique(temp)
    data[:, i] = _map_to_integer(temp, classes)
    
print(time.time() - start2)

3) 模仿

start1 = time.time()

data = np.asarray(data)
for i in range(data.shape[1]):
    temp = data[:, i]
    classes = np.unique(data[:, i])
    for idx, j in enumerate(classes):
        temp[temp == j] = idx
    data[:, i] = temp

print(time.time() - start1)

4. 对比分析

调用sklearn编码时间:0.03752398490905762
仿写的时间: 0.06799888610839844
sklearn内部代码:0.06450891494750977

        根据上述结果可以看出,自己的代码还有很大的优化空间,欢迎大家提供思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值