背包问题【完全背包】

这篇博客介绍了如何使用动态规划解决完全背包问题。完全背包允许每种物品无限数量,而01背包每种物品仅有一个。文章通过两种算法实现:朴素算法和数组压缩。朴素算法通过三层循环实现,而数组压缩优化了空间复杂度,只遍历物品和背包容量。最后,代码展示了这两种方法如何找到在不超过背包容量的情况下,最大化物品价值的解决方案。
摘要由CSDN通过智能技术生成
完全背包

题目描述:
有n种物品,每个物品有一个重量w 和 价值 v。但是每种物品的数量是无限,同时有一个背包,最大载重 m, 从 n中物品中选出若干件(同一种物品可以选多次),使其重量和 <= m,并且价值和最大。

完全背与01背包区别: 完全背包每种物品数量是无限,01背包每种物品数量只有一个
解析:每件物品可以拿取 0,1,2,3 … n 个直到装满,那么可以获取物品数量为 0 ~ m / w[i]
朴素算法:
对比01背包(每次拿0个或1个),完全背包拿每次拿0个,1个,2个…直到 j / w[i] 个,保存最大值。

#include <iostream>
using namespace std;
int dp[205], w[35], v[35];
int main() {
    int n, m; //n:商品数量,m:背包容量
    cin >> n >> m;
    for (int i = 1; i <= n; ++i) {
        cin >> w[i] >> v[i];
    }
    for (int i = 1; i <= n; ++i) {
        for (int j = m; j >= w[i]; --j) {
            for (int k = 0; k <= j / w[i]; ++k) { //当前背包容量j下,拿第i件物品的最大个数
                dp[j] = max(dp[j], dp[j - k * w[i]] + k * v[i]);
            }
        }
    }
    cout << endl << "max value:" << dp[m];
    return 0;
}

数组压缩:

#include <iostream>
using namespace std;
int dp[205], w[35], v[35];
int main() {
    int n, m; //n:商品数量,m:背包容量
    cin >> n >> m;
    for (int i = 1; i <= n; ++i) {
        cin >> w[i] >> v[i];
    }
    /*for (int i = 1; i <= n; ++i) {
        for (int j = m; j >= w[i]; --j) {
            for (int k = 0; k <= j / w[i]; ++k) {
                dp[j] = max(dp[j], dp[j - k * w[i]] + k * v[i]);
            }
        }
    }*/
    for (int i = 1; i <= n; ++i) {
        for (int j =1; j<= m; ++j) {
            if (j>=w[i])
                dp[j] = max(dp[j],dp[j-w[i]]+v[i]);
        }
    }
    cout << endl << "max value:" << dp[m];
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值