完全背包
题目描述:
有n种物品,每个物品有一个重量w 和 价值 v。但是每种物品的数量是无限,同时有一个背包,最大载重 m, 从 n中物品中选出若干件(同一种物品可以选多次),使其重量和 <= m,并且价值和最大。
完全背与01背包区别: 完全背包每种物品数量是无限,01背包每种物品数量只有一个
解析:每件物品可以拿取 0,1,2,3 … n 个直到装满,那么可以获取物品数量为 0 ~ m / w[i]
朴素算法:
对比01背包(每次拿0个或1个),完全背包拿每次拿0个,1个,2个…直到 j / w[i] 个,保存最大值。
#include <iostream>
using namespace std;
int dp[205], w[35], v[35];
int main() {
int n, m; //n:商品数量,m:背包容量
cin >> n >> m;
for (int i = 1; i <= n; ++i) {
cin >> w[i] >> v[i];
}
for (int i = 1; i <= n; ++i) {
for (int j = m; j >= w[i]; --j) {
for (int k = 0; k <= j / w[i]; ++k) { //当前背包容量j下,拿第i件物品的最大个数
dp[j] = max(dp[j], dp[j - k * w[i]] + k * v[i]);
}
}
}
cout << endl << "max value:" << dp[m];
return 0;
}
数组压缩:
#include <iostream>
using namespace std;
int dp[205], w[35], v[35];
int main() {
int n, m; //n:商品数量,m:背包容量
cin >> n >> m;
for (int i = 1; i <= n; ++i) {
cin >> w[i] >> v[i];
}
/*for (int i = 1; i <= n; ++i) {
for (int j = m; j >= w[i]; --j) {
for (int k = 0; k <= j / w[i]; ++k) {
dp[j] = max(dp[j], dp[j - k * w[i]] + k * v[i]);
}
}
}*/
for (int i = 1; i <= n; ++i) {
for (int j =1; j<= m; ++j) {
if (j>=w[i])
dp[j] = max(dp[j],dp[j-w[i]]+v[i]);
}
}
cout << endl << "max value:" << dp[m];
return 0;
}