关于大模型技术储备
学好大模型不论是对就业还是开展副业赚钱都非常有利,但要想掌握大模型技术,还是需要有一个明确的学习规划。这里,我为大家分享一份完整的大模型学习资料,希望能帮助那些想要学习大模型的小伙伴们。
AI大模型入门基础教程
第1章 快速上手:人工智能演进与大模型崛起
1.1 从AI到AIOps
1.2 人工智能与通用人工智能
1.3 GPT模型的发展历程
第2章 大语言模型基础
2.1 Transformer 模型
- 嵌入表示层
- 注意力层
- 前馈层
- 残差连接与层归一化
- 编码器和解码器结构
2.2 生成式预训练语言模型 GPT
- 无监督预训练
- 有监督下游任务微调
- 基于 HuggingFace 的预训练语言模型实践
2.3 大语言模型结构
- LLaMA 的模型结构
- 注意力机制优化
第3章 大语言模型基础
3.1 数据来源
- 通用数据
- 专业数据
3.2 数据处理
- 低质过滤
- 冗余去除
- 隐私消除
- 词元切分
3.3 数据影响分析
- 数据规模影响
- 数据质量影响
- 数据多样性影响
3.4 开源数据集合
- Pile
- ROOTS
- RefinedWeb
- SlimPajama
第4章 分布式训练
4.1 分布式训练概述
4.2 分布式训练并行策略
- 数据并行
- 模型并行
- 混合并行
- 计算设备内存优化
4.3 分布式训练的集群架构
- 高性能计算集群硬件组成
- 参数服务器架构
- 去中心化架构
4.4 DeepSpeed 实践
- 基础概念
- LLaMA 分布式训练实践
第5章 有监督微调
5.1 提示学习和语境学习
- 提示学习
- 语境学习
5.2 高效模型微调
- LoRA
- LoRA 的变体
5.3 模型上下文窗口扩展
- 具有外推能力的位置编码
- 插值法
5.4 指令数据构建
- 手动构建指令
- 自动生成指令
- 开源指令数据集
5.5 Deepspeed-Chat SFT 实践
- 代码结构
- 数据预处理
- 自定义模型
- 模型训练
- 模型推
第6章 强化学习
6.1 基于人类反馈的强化学习
6.2 奖励模型
6.3 近端策略优化
6.4 MOSS-RLHF 实践
第7章 大语言模型应用
7.1 推理规划
7.2 综合应用框架
7.3 智能代理
7.4 多模态大模型
7.5 大语言模型推理优化
第8章 大语言模型评估
8.1 模型评估概述
8.2 大语言模型评估体系
8.3 大语言模型评估方法
8.4 大语言模型评估实践
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
总结
坚持到了这儿,恭喜你,表示你有做AI大模型工程师的潜力。其实我想说的上面的内容只是冰山一角,刚开始大家不需要多么精通了解这些内容。主要是不断练习,让自己跳出「舒适区」,进入「学习区」,但是又不进入「恐慌区」,不断给自己「喂招」。