大模型对职场的影响
在当今科技飞速发展的时代,大模型已经成为推动人工智能领域革新的关键力量。从自然语言处理、计算机视觉到生物信息学,大模型以其卓越的性能和广泛的应用场景,正深刻改变着各行各业的运作模式。对于程序员而言,掌握大模型不仅意味着打开了新的职业大门,更是在日益激烈的职场竞争中脱颖而出的法宝。
随着大模型技术的不断成熟,它们正以前所未有的速度渗透至日常生活的各个角落。从智能客服、个性化推荐到自动驾驶,大模型的应用范围日益扩大,对人才的需求也随之水涨船高。对于程序员而言,这既是挑战,更是机遇。掌握大模型,意味着掌握了未来职场的通行证。
程序员为什么要掌握大模型
在大模型的浪潮中,程序员的角色日益重要。大模型的开发、调试、优化和部署,每一个环节都需要深厚的技术功底和创新思维。掌握大模型,不仅能显著提升程序员的技能树,还能使其在团队中扮演更加核心的角色。此外,随着大模型在各行业的广泛应用,具备相关技能的程序员将更容易获得高薪职位和职业晋升的机会。
更重要的是,大模型的掌握意味着程序员能够参与到更具有前瞻性和影响力的技术项目中,这对于个人职业生涯的成长和个人品牌的建立都有着不可估量的价值。在大模型的加持下,程序员将不再仅仅是代码的编写者,而是能够引领技术潮流、解决复杂问题的创新者。
如何利用大模型快速提升自己的职场竞争力
要快速掌握大模型,程序员可以从以下几个方面入手:
-
理论学习:深入了解大模型的基本原理和架构,掌握相关的数学基础和机器学习理论。可以通过在线课程、专业书籍和学术论文等多种途径进行学习。
-
实践操作:理论与实践相结合是掌握大模型的关键。参与开源项目、构建个人项目或参加比赛,都是积累实践经验的好方法。通过实际操作,程序员可以加深对大模型的理解,提升解决问题的能力。
-
社区交流:加入技术社区和论坛,与同行交流心得,可以获取最新的技术资讯,解决遇到的问题,甚至找到志同道合的合作伙伴。GitHub、Stack Overflow和各大技术论坛都是不错的选择。
-
持续跟进:大模型领域日新月异,持续学习和跟进最新研究动态至关重要。订阅相关领域的博客、期刊和新闻,定期参加研讨会和培训,保持技术敏锐度。
-
项目实战:争取参与公司的大模型项目,或主动承担相关任务。在实际工作中应用大模型,不仅能提升技术实力,还能增强团队协作能力和项目管理经验。
掌握大模型,对于程序员而言,不仅是一次技术的飞跃,更是一次职业路径的重塑。在这个过程中,持续学习、勇于实践和开放交流将成为程序员快速成长的三大法宝。随着大模型技术的不断进步,掌握这项技能的程序员将在未来的职场竞争中占据有利位置,开启更加广阔的职业前景。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。