本文介绍了一种名为“卡雷” 的新框架,它将知识图谱(KG)群级检索与大语言模型(LLM)推理相结合,用于优化和增强医疗预测,不仅提高了预测的准确性,还使医疗预测更加可解释且符合临床语境。
随着大语言模型(LLMs)在自然语言处理领域的革命性进展,其在医疗健康领域的应用潜力逐渐显现。大语言模型能够从海量医疗数据中提取有价值的洞见,从而辅助临床决策。然而,大语言模型在处理专业医学知识时仍面临诸多挑战,如产生幻觉和缺乏细粒度的背景医学知识,这限制了其在诸如临床诊断等高风险医疗应用中的表现。传统的检索增强生成(RAG)技术虽然旨在通过检索外部知识来减轻幻觉问题,但在医疗应用中往往检索到的信息虽然在潜在空间中语义相似,但未能提供有意义的临床洞见,导致医疗预测的结果不理想。
为了解决这一问题,“卡雷”框架通过构建和检索多源医学概念知识图谱,动态丰富患者数据,并利用这些丰富的上下文生成逐步推理链,从而提高临床任务的可解释性和预测准确性。“卡雷”的关键创新点包括:(1)一种密集的医学知识结构化方法,能够准确检索相关信息,与传统方法不同,“卡雷”专注于结构化密集且细粒度的医学知识,针对每个患者的具体情况量身定制。(2)一种动态知识检索机制,能够根据患者背景提供有针对性的多方面医学洞见,这与传统检索增强生成模型基于表面相似性检索信息的方式形成鲜明对比,后者往往会忽略重要的临床细节。(3)一种推理增强的预测框架,利用这些丰富的背景产生准确且可解释的临床预测,使得临床预测更加透明可信。
研究人员使用MIMIC-III和MIMIC-IV数据集(这些数据集包含了大量的电子病历数据)对“卡雷”框架进行了实验,评估了“卡雷”框架在医院死亡率和再入院预测任务上的性能。实验结果表明,“卡雷”在住院死亡率和再入院预测任务上显著优于现有最佳模型,分别在MIMIC-III和MIMIC-IV数据集上提高了10.8-15.0%和12.6-12.7%的预测准确性。此外,“卡雷”框架不仅预测准确率高,还展示了其在解释性和信任度方面的优势,通过生成详细的推理链,增强了临床预测的可信度。
综上所述,“卡雷”框架通过巧妙地结合知识图谱集群检索和大语言模型推理,有效地解决了现有大语言模型模型在医疗预测中存在的幻觉和缺乏细粒度医学知识的问题,在提高预测准确性的同时,也增强了预测的可解释性和可信度,为临床决策支持系统提供了新的思路和方法。该文的创新之处在于其提出的密集医学知识结构、动态知识检索机制和推理增强预测框架,这些创新共同促进了“卡雷”框架在医疗预测任务上的优异表现。未来研究可以进一步探索如何扩展“卡雷”框架以处理更多类型的医疗数据和预测任务,以及如何进一步提高其可解释性和鲁棒性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。