一、智能体Agent
在大语言模型的基础上,智能体就是一个能够自主思考和行动的聪明助手。它不仅能理解用户需求,还能拆解任务,调用各种工具来扩展自身能力,实现用户的具体指令。想象一下,一个不需要人工干预就能自主探索和决策的存在,这就是智能体。它具备快速反应环境变化的能力,不仅仅是被动地应对,还能够推理、计划和行动,实现特定目标。此外,智能体还能与其他智能体(包括人类)进行互动,真正实现了人与机器之间无缝沟通。
AI Agent的架构设计可以有多种方式,不同的研究者和开发者可能会根据特定的应用场景和需求,设计出不同的架构。
一个完整AI Agent架构,包括以下关键组件:
- (1)感知(Perception)
感知是Agent与外部世界互动的桥梁,负责收集和解析环境数据。举个例子,在自动驾驶车辆中,感知系统包含雷达、摄像头和传感器。这些设备不断监测周围环境,识别交通标志、行人和其他车辆。
- (2)规划(Planning)
规划是Agent的决策大脑,把目标拆解成可执行的步骤,制定实现目标的策略。比如,一个项目管理AI Agent,会根据项目截止日期和资源分配,创建任务列表和时间表,分配具体工作给团队成员。
- (3)记忆(Memory)
记忆分为短期和长期,允许Agent存储和检索信息,支持学习和长期知识积累。短期记忆,比如一个在线客服AI,能在对话中记住用户的问题和偏好,提供即时的个性化服务。长期记忆,比如一个科研AI Agent,会存储先前研究的数据和结果,用于新项目,加速发现过程。
- (4)工具使用(Tools Use)
工具使用是指Agent利用外部资源或工具增强其能力。这些工具可以是API、软件库、硬件设备或其他服务。
比如,一个数据分析AI Agent,使用外部API获取实时股市数据,或调用机器学习模型进行预测分析。
- (5)行动(Action)
行动是Agent执行任务和与环境互动的具体行为。它基于规划和记忆执行具体动作,完成任务并响应环境。
比如,一个智能家居控制系统,会根据分析结果自动调节家中的照明、温度和安全系统。
用一个图进行描绘说明:
二、智能体平台
国内的小伙伴们大多数都无法科学上网,所以很多时候就只能用国内的智能体平台。目前国内比较火智能体平台介绍如下:
- coze:
coze 是一个基于大模型的 AI 智能体平台,旨在构建基于大模型的 AI 智能体,以加速 AI 技术的实际落地,助力企业智能化转型。
- dify:
Dify是一个强大的开源智能体平台,与Coze类似,它也致力于构建基于大模型的AI智能体,加速AI技术的实际落地,助力企业智能化转型。Dify支持多种模型选择,包括用户自定义微调的LLM,这使得它在功能上比Coze更具优势。
- 文兴智能体平台:
文心智能体平台,作为百度推出的 AI Agent 开发平台,标志着企业智能化服务的新篇章。这个开放平台集成了多种人工智能技术,为企业和开发者提供了强大的智能化服务和企业 AI 解决方案。
- 天工 - SkyAgent:
天工SkyAgents是昆仑万维推出的一款AI Agent开发平台,基于昆仑万维的“天工大模型”打造。该平台具备从感知到决策、从决策到执行的自主学习和独立思考能力,用户可以通过自然语言构建自己的单个或多个“私人助理”
- 讯飞的星火友伴:
讯飞的星火智能体(Agent)是基于科大讯飞推出的星火大模型构建的一种智能应用程序,旨在提供更智能和便捷的人机交互体验。星火智能体平台覆盖了办公、管理、科创、生产等多种高频场景,支持零代码或低代码开发,使企业能够快速构建适用于自身业务场景的智能体应用
三、Dify智能体开发
小伙伴们使用大模型,除了使用国内大公司提供的平台进行白嫖,很多更深入的使用就是自己进行本地化,那么Dify就是一个非常好的开源智能体平台。目前该平台已经优化到了0.11.0版本,对并发执行已经支持。它也是我平时用得最多的智能体平台。
它最核心的,不是技术,而是工作流,是你想让它们具体怎么做。dify在这方面特别直观——它把代码的逻辑,用流程的方式在画板上呈现出来。你一用就明白。第二,Learning by Doing,边做边学。AI对我们来说,不是理论问题,而是实操问题。dify特别适合拿来拆装,就像玩具、积木。你把一个工作流跑通了,不仅能学到东西,还挺有成就感。
并且官方给出的智能体和工作流案例,编写得非常好而且很详细,每一个案例都值得学习和研究。
四、AI大模型应用
我自己在做研究大模型应用的时候,很多时候会直接用开源的Dify,但是api是收费,本着节约成本的原则去探索市面上的智能体平台,虽然市面上有很多智能体平台,但是东一个西一个比较分散,所以思考是不是可以开发一个平台,把对自己非常有用的智能体平台或者agent集成在系统里,并且在系统里跳转。
最后开发了这个平台,并且实现了切换导航的时候,不进行刷新,保持当前的各个页面状态,非常方便使用。
集成各大平台的智能体是初步的研究,在之后的开发中,更多的围绕着自己写文章进行深入,实现全方位的辅助自己文章的输出。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。