在大模型时代,企业如何通过多模态智能引擎实现知识库技术应用的转型。以及企业知识应用的演进过程、大模型时代的企业业务需求、数据准备和知识转换的关键步骤,以及大模型在企业知识中台的实际应用和案例分享。重点阐述了元数据知识化、多模态智能引擎的功能与优势,并展望了未来多模态数据和决策智能的发展方向。
一、背景与趋势–大模型时代的应用开发范式转移
随着大模型技术的不断发展,企业应用开发的范式也在发生巨大转变。从最初的1.0时代文档管理和简单搜索,到2.0时代的知识图谱构建,再到3.0时代的大模型泛化能力,整个过程不仅仅是技术的进步,更是企业业务需求的不断演进。
在1.0时代,文档管理和简易的全文检索解决了企业最基础的信息存储和获取问题,但其泛化能力和应用场景极其有限。
2.0时代引入了知识图谱,但图谱构建的高成本和低效能使得其推广受限。
到了3.0时代,大模型的泛化能力开始显现,智能涌现的特性逐步得到应用,不同行业开始探索更复杂的应用场景,比如文档问答、Text2Data、Text2API等。
然而,随着行业技术的精进,企业对知识应用的需求也在不断变化。大模型可以带来更精准、更智能的业务决策,但其落地需要完善的数据准备和知识转换。在这种背景下,多模态智能引擎成为解决这些问题的关键。它不仅能够处理结构化数据,还能高效整合非结构化和半结构化数据,满足企业多样化的数据需求。
二、基于多模态智能引擎的大模型企业知识中台
大模型时代,企业的知识库建设不再仅仅依赖于单一的数据类型或数据源。多模态智能引擎的引入,使得企业可以将结构化、非结构化和半结构化数据进行统一管理和应用。企业知识中台的理念逐渐形成,通过多模态智能引擎,企业可以将不同类型的数据进行融合,打破数据孤岛,实现数据的互联互通。
多模态智能引擎结合了图和向量两大核心技术,利用图算法和向量相似度计算,使得企业能够更加高效地进行数据查询和知识挖掘。它不仅能够处理文本数据,还能对图片、音频、视频等多模态数据进行解析和应用,从而大大扩展了知识库的应用范围。通过多模态智能引擎,企业可以构建一个高效、智能的知识中台,实现知识的自动抽取、存储、查询和应用,提升业务决策的准确性和及时性。
三、数据就绪:元数据知识化
在大模型的应用过程中,数据就绪是实现智能应用的基础。元数据知识化是数据就绪的关键一步。通过元数据管理,企业可以将不同类型的数据进行统一描述和管理,从而提升大模型的应用效能。元数据不仅是数据的描述,更是数据关系的体现。通过元数据,可以对数据进行智能补齐,发现隐藏的数据关系,构建数据血缘。
元数据知识化的核心在于利用大模型进行元数据的智能补齐和关系发现。通过图结构的构建,可以对数据进行更深入的分析和应用,提升数据的利用价值。在AI Ready for Data的过程中,元数据知识化不仅提升了数据的完整性和准确性,还为后续的知识转换和应用奠定了基础。
四、知识转换:从数据到多模态智能引擎
知识转换是从数据到知识的关键环节,通过多模态智能引擎的引入,将企业的多源数据进行处理和解析,转换为可用的知识。多模态智能引擎结合了图和向量两大核心技术,通过图结构的关系推理和向量相似度计算,实现了数据的多维度解析和应用。图结构的引入,使得企业能够对数据进行更深层次的关系分析,而向量引擎则通过高效的相似度计算,实现数据的快速查询和应用。
知识转换过程中的核心在于融合不同类型的数据,通过图、向量和多模态智能引擎的结合,企业能够实现从数据到知识的高效转换。无论是结构化数据、非结构化数据,还是半结构化数据,都能在多模态智能引擎中得到高效的解析和应用,提升知识库的利用价值。
五、价值挖掘:企业知识中台落地应用
在企业知识中台的实际应用中,多模态智能引擎不仅提升了知识库的智能化水平,还为企业的业务决策提供了有力支持。通过多模态智能引擎,企业能够对内部数据进行深入挖掘和应用,实现知识的精准管理和高效利用。企业知识中台在文档问答、业务报告生成、数据摘要等多种应用场景中得到了广泛应用,极大提升了业务决策的智能化和精准度。
多模态智能引擎通过对数据的智能筛选和关系分析,帮助企业优化业务流程,提升工作效率。数据的多模态解析和应用,使得企业能够更好地服务于不同业务场景,提升整体业务水平。在实现知识库的落地应用过程中,多模态智能引擎扮演了至关重要的角色,通过智能化的处理和应用,为企业创造了巨大的价值。
六、案例分享和未来展望
在大模型和多模态智能引擎的结合应用中,企业在多个实际案例中取得了显著成效。无论是对企业内部文档的智能解析和问答,还是对业务流程的优化和改进,多模态智能引擎都展现了其强大的应用潜力。通过元数据知识化和多模态智能引擎的结合,企业能够实现从数据到知识的高效转换和应用,提升业务决策的智能化水平。
展望未来,多模态数据和决策智能将成为企业知识库应用的核心方向。随着大模型技术的不断进步,企业将能够更好地融合不同类型的数据,提升智能应用的水平。多模态智能引擎将成为企业实现智能决策和业务优化的关键工具,为企业的发展提供强大的技术支持和应用保障。通过不断的技术创新和应用探索,企业将在大模型时代实现知识库技术应用的全面转型和升级。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。