大型语言模型(LLM) 为人工智能带来了所未有的推理能力,极大地扩展了机器的认知边界。它们不再仅仅是执行简单任务的工具,而是成为了人类的"智力外脑",能够提供深入的分析、创造性的解决方案和复杂的决策支持。这种推理能力的跃迁得益于LLM在理解和生成自然语言方面的巨大进步。它们能够解析复杂的文本,提取关键信息,进行逻辑推理,并生成连贯、有见地的回应。这使得LLM能够处理各种知识密集型任务,如法律分析、市场研究、科学发现等,为个人和企业提供了强大的智能支持。
思维链的生成
与以往的人工智能相比,大语言模型的显著特征是推 理能力的强大表现。推理能力是指模型在处理信息时,能够 进行逻辑推导、分析和解决问题的能力。通常体现在能够对 复杂问题的理解、对信息的整合以及在给定上下文中生成 合理、连贯和有说服力的回答。
如同人类学习语言一样,AI大模型通过大量数据的学 习 和 模 仿 ,逐 渐 构 建 起 丰 富 而 高 效 的 模 型 。在 训 练 阶 段 ,大 模型通过深度学习技术,通过多层神经网络,对接收输入的 海量数据进行学习和优化,并通过学习调整模型的参数,使其能够对输入数据进行准确的预测。
推理(Inference)阶段 则建立在训练完成的基础上,将训练好的模型应用于新的、 未见过的数据。
模型利用先前学到的规律进行预测、分类 或生成新内容,使得AI在实际应用中能够做出有意义的决 策。
这些模型利用深度学习架构,如Transformer,来捕捉 文本中的长距离依赖关系,并通过注意力机制聚焦于输入 序列中与任务最相关的部分。
此外,通过使用启发式算法如 贪婪解码、束搜索或思维链(Chain of Thought)Prompt- ing等策略,LLM能够生成连贯且逻辑性强的文本,展现出 在复杂问题上的推理能力。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
机 器 外 脑 开 启“ 智 力 即 服 务( I Q a a S )新 模 式
更高的算力与更好的模型的加持下,机器不再仅仅是 执 行 简 单 任 务 的 工 具 ,而 是 成 为 了 人 类 的 " 智 力 外 脑 " ,能 够 提供深入的分析、创造性的解决方案和复杂的决策支持。
它 们能够识别问题的核心要素,构建逻辑框架,并通过逐步推 演得出结论。
这种能力使得大模型在法律、医疗咨询、科学 研究等高知识密度领域展现出巨大潜力,为用户提供了更为
精准和深入的服务。过去几十年我们一直在追求更快的计 算机,但现在和未来,我们将追求更强大的大脑。Andrej Karpathy 提出了“软件2.0”,即传统软件开发转变到以AI 模型为核心的新时代。
未来,我们将依赖于无尽的算力和多 样 化 的 A I 模 型 来 构 建“ 机 器 之 心 ”,这 将 使 我 们 能 够 实 现 前 所未有的智能服务和应用。
AI将引领新的服务模式,即“智力即服务”,它通过云端平 台为用户提供了一种灵活、高效的人工智能使用方式。过去的 SaaS服务通常按每个账户定价,本质上是以员工成本为基 准,以提高员工的生产力。在大模型时代,直接出售工作成果 开辟来了新的垂直机会。
LLMs为创业公司提供了一个机会发 掘以前受到软件的市场推广和定价限制而无法涉足的领 域 。为 此 ,创 业 者 应 考 虑 的 不 仅 仅 是 出 售 软 件 以 提 高 端 用 户 的生产力,而是思考如何出售工作需求包本身。
与传统的本地部署相比,智力即服务模式允许用户根 据实际需求快速调整资源,无需大量前期投资即可获得专 业 的 A I 能 力 。
企 业 和 个 人 可 以 根 据 自 己 的 具 体 需 求 ,选 择 相 应的LLM服务,如文本分析、情感分析、机器翻译等。这些服 务以需求包的形式被调用,并且可以轻松集成到现有的工作流程中,提高效率,优化决策过程,并创造新的商业价值。
例如,企业可以把优化营销结果的目标拆分成“利用LLM进 行市场趋势分析,预测消费者行为,制定更有针对性的营销 策 略 ”,然 后 通 过“ 智 力 即 服 务 ”获 取 这 些 服 务 。这 种 模 式 不 仅 降 低 了 技 术 门 槛 ,还 通 过 持 续 的 更 新 和 优 化 ,保 证 了 服 务的先进性和可靠性。
此外,大模型的专业化和定制化服务能力,使得不同行 业的企业都能获得符合自身特定需求的智能解决方案。这 促进了企业运营效率的提升,支持了基于数据分析的决策制 定,同时激发了创新和新产品开发。智力即服务还强调了成 本效益和安全性,帮助企业优化成本结构,同时确保用户数 据的安全和隐私。随着大模型技术的不断进步,智力即服务 正在成为推动各行各业数字化转型的重要力量。
机器外脑助力个体成为“超级生产者”
对于个体而言,大模型技术迭代加速、衍生的AI原生产 品层出不穷,并非单纯是AI对人的能力的替代。LLM的推理 能力也为个人提供了巨大的便利。
无论是学术研究、创意写 作还是日常决策,人们都可以借助LLM获取深入的见解和建 议 。
个 体 借 助 大 模 型 应 用 、通 过 与 A I 进 行 协 作 ,能 够 有 效 拓 展能力边界,在生活和工作场景中成为一名擅长“人机协 作”、充满创意和效率的超级生产者。
随着大模型技术向多 模 态 、端 侧 智 能 和 A g e n t s( 智 能 体 )等 前 沿 方 向 演 进 ,其 在 创作领域的应用潜力将持续赋能个体进行更高效、更具创 造性的创作。
未来,我们将迎来一批具备以下特质的超级生 产者:熟练掌握与AI协作的方式;具备跨学科和跨领域融合的 思 维 ;擅 长 建 立 和 拥 有 个 人 品 牌 和 网 络 :拥 有 强 大 的 个 人 品牌和广泛的专业网络;具有创新动力和能力;拥有技术伦 理意识。从这一视角出发,超级生产者也有潜力成为未来零 工经济的主力。
随着技术的不断进步,LLM的推理能力将变得更加强 大和精细。我们可以预见,未来,iQaaS使人类的推理能力 得以在云端实现,智力将有望变成像电力一样的公共服务获 取 。这 不 仅 将 极 大 地 推 动 社 会 的 整 体 智 力 水 平 ,也 将 为 个 人 和企业带来更多的发展机遇和创新可能。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。