在今天的科技世界中,人工智能(AI)已经成为推动创新和变革的关键力量之一。尤其是由 OpenAI 开发的 GPT-4 和 ChatGPT 模型,正引领着人机交互的新纪元。这些大语言模型(Large Language Models,LLM)通过大量数据训练,能够以极高的准确性理解和生成自然语言文本,为各种应用场景带来了前所未有的可能性。
一、LLM 概述
本节将介绍塑造 GPT-4 和 ChatGPT 发展的基础模块,帮助你全面理解语言模型、自然语言处理(NLP)技术、Transformer 架构的作用,以及 GPT 模型中的标记化和预测过程。
探索语言模型和 NLP 的基础
人工智能是一类能够执行通常需要人类智能才能完成任务的计算机系统。自然语言处理(NLP)是 AI 的一个子领域,旨在使计算机能够理解、处理和生成自然语言文本。语言模型是 NLP 中的核心组件,GPT-4 和 ChatGPT 就是基于这种模型的先进成果。
语言模型通过分析和学习大量文本数据,能够识别和生成人类可读的文本。早期的 n-gram 模型依赖词频进行预测,但在理解上下文和语法方面存在局限。随着循环神经网络(RNN)和长短期记忆网络(LSTM)的引入,模型在处理长序列和上下文理解上有了显著提升。然而,这些模型在处理大规模数据时的效率仍然不尽如人意。
理解 Transformer 架构及其在 LLM 中的作用
Transformer 架构由谷歌公司在 2017 年提出,彻底改变了 NLP 领域。与 RNN 不同,Transformer 依赖于注意力机制,能够高效处理长文本序列并记住其上下文。这一创新使得模型能够更好地理解句子中的单词顺序和上下文意义,极大地提升了语言理解和生成的能力。
Transformer 架构主要由编码器和解码器组成,其中解码器部分是 GPT 模型的基础。GPT 模型通过自注意力机制(Self-Attention)和交叉注意力机制(Cross-Attention)来生成上下文相关的文本补全结果。这些机制使得模型能够在生成每个词汇时,参考整个上下文,从而生成连贯且有意义的文本。
解密 GPT 模型的标记化和预测步骤
GPT 模型接收一段提示词作为输入,经过标记化(Tokenization)后,将输入文本拆分为标记(tokens),这些标记可以是单词、词的一部分或符号。模型通过分析这些标记,预测最有可能出现的下一个标记,从而逐步生成完整的回答。
例如,输入提示词:“The weather is nice today, so I decided to”,模型将预测下一个词汇,并逐步生成完整句子:“go for a walk.”。这一过程是迭代式的,每次预测一个标记,直到生成完整的回答或达到指定的标记数限制。
二、GPT 模型简史:从 GPT-1 到 GPT-4
回顾 OpenAI 的 GPT 模型从 GPT-1 到 GPT-4 的演变历程,展示其在规模、能力和应用上的提升。
1.2.1 GPT-1
2018 年,OpenAI 发布了首个 GPT 模型,即 GPT-1。GPT-1 采用了 Transformer 架构,拥有 1.17 亿个参数。在 GPT-1 的基础上,模型通过无监督的预训练步骤,学习从大量文本中预测下一个词汇的能力。随后,GPT-1 通过监督微调(Supervised Fine-Tuning)在特定任务上进行优化,展示了其在多种 NLP 任务上的潜力。
GPT-2
2019 年,OpenAI 发布了 GPT-2,参数量增加到 15 亿,训练数据集规模扩展至 40 GB。GPT-2 展示了更强大的文本生成能力,能够生成更长、更连贯的文本。这一版本的 GPT 模型公开发布,推动了自然语言生成技术的广泛应用和讨论。
GPT-2 是公开可用的,可以从 Hugging Face 或 GitHub 下载。
GPT-3
2020 年,GPT-3 的发布标志着 GPT 系列的重大突破。GPT-3 拥有 1750 亿个参数,在更多样化和庞大的数据集上进行训练,显著提升了模型的语言理解和生成能力。GPT-3 取消了微调步骤,依赖于提示工程(Prompt Engineering)来适应不同的任务,这使得它在文本生成、问题回答、编程辅助等多个领域表现出色。
1.2.4 从 GPT-3 到 InstructGPT
为了提升模型在遵循人类指令和生成更安全、有用回答的能力,OpenAI 在 2021 年推出了 InstructGPT。InstructGPT 通过强化学习和人类反馈(Reinforcement Learning from Human Feedback,RLHF)进行优化,使得模型能够更好地理解和执行用户指令,减少生成有害或不准确的内容。
1.2.5 GPT-3.5、Codex 和 ChatGPT
2022 年,OpenAI 发布了 GPT-3 的增强版本 GPT-3.5,以及专注于代码生成的 Codex 模型。Codex 是 GPT-3 的一个变体,专门微调用于编程任务,支持多种编程语言,助力开发者自动生成代码。随后,ChatGPT 作为一个基于 GPT-3.5 的对话式模型发布,进一步优化了人机交互体验,广泛应用于客服、教育、内容创作等领域。
GPT-3.5、Codex正是它给 GitHub Copilot 这款自动化编程工具赋予了强大的能力,为使用 Visual Studio Code、JetBrains 甚至 Neovim 等许多文本编辑器的开发人员提供了帮助。
GPT-4
2023 年,OpenAI 发布了 GPT-4,进一步提升了模型的规模和多模态能力。GPT-4 不仅支持文本生成,还具备图像理解能力,能够处理和生成与图像相关的文本内容。相比 GPT-3.5,GPT-4 在复杂推理、理解上下文和生成连贯回答方面表现更加出色,被广泛应用于更复杂的任务和专业领域。
三、LLM 用例和示例产品
大语言模型(LLM)如 GPT-4 和 ChatGPT 正在被广泛应用于各个行业,以下是一些典型的应用实例:
Be My Eyes
Be My Eyes 是一个致力于帮助视障人士的应用,通过连接志愿者和需要帮助的用户,提供实时的视觉辅助。借助 GPT-4 的多模态能力,Be My Eyes 开发了虚拟志愿者,进一步提升了服务的效率和覆盖范围。
摩根士丹利
摩根士丹利利用 GPT-4 的强大分析能力,开发了聊天机器人,能够高效地从海量财务文档中提取和总结关键信息,帮助财务顾问快速获取所需见解,提升工作效率。
可汗学院
可汗学院将 GPT-4 集成到其教育平台中,推出了 Khanmigo AI 助理,帮助学生进行学术辅导和作业指导。Khanmigo 能够根据学生的提问生成详细且易于理解的解答,提升学习效果。
多邻国
多邻国(Duolingo)借助 GPT-4,推出了增强的语言学习功能,如角色扮演和答案解释,帮助用户通过自然对话和实时反馈,更有效地掌握新语言。
Yabble
Yabble 是一家市场研究公司,利用 GPT-4 的嵌入和分析能力,自动化分析消费者数据,生成洞察报告,帮助企业做出数据驱动的决策。
Waymark
Waymark 提供了一个利用 GPT 模型生成视频广告的创作平台,简化了广告制作流程,使企业能够快速生成高质量、个性化的广告内容。
Inworld AI
Inworld AI 提供了一个平台,用于创建具有独特个性和多模态表达能力的 AI 角色,广泛应用于视频游戏和虚拟世界中,提升了玩家的互动体验。
四、警惕 AI 幻觉:限制与考虑
尽管 LLM 展现出了强大的能力,但在使用过程中仍需警惕 AI 幻觉(AI Hallucination)现象,即模型自信地生成错误或虚构的信息。这种现象在需要准确和可靠信息的应用场景中尤为危险。
例如,当要求 ChatGPT 进行复杂计算时,模型可能会给出错误答案,因为它不具备实际的计算能力。为了应对这一问题,OpenAI 引入了插件功能,使 GPT 模型可以调用外部工具如计算器执行准确的数学运算。此外,模型的输出需要经过仔细验证和审查,确保其准确性和合规性。
五、使用插件和微调优化 GPT 模型
除了基本的文本生成功能,OpenAI 提供了多种高级功能,如插件和微调,进一步增强了 GPT 模型的能力和适应性。
插件
OpenAI 的插件功能允许 GPT 模型与第三方应用程序集成,扩展其功能范围。例如,计算器插件使模型能够进行准确的数学运算,搜索插件让模型能够实时检索互联网信息。这些插件不仅提升了模型的实用性,还使其在处理复杂任务时更加可靠。
微调
微调是对预训练模型进行进一步训练,以适应特定任务或领域需求的过程。通过使用特定领域的高质量数据集,开发人员可以微调 GPT 模型,使其在特定应用场景中表现得更加出色。例如,为金融分析、法律咨询或客户服务定制微调模型,可以显著提升其在这些领域的专业性和准确性。
六、小结
GPT-4 和 ChatGPT 作为先进的大语言模型,正在推动 AI 技术在各个领域的广泛应用。从自然语言生成到多模态交互,它们为开发人员和企业提供了强大的工具,改变了人机交互的方式。然而,在享受这些技术带来的便利和创新的同时,也需谨慎应对 AI 幻觉等潜在风险,确保技术应用的安全性和可靠性。未来,随着插件和微调技术的进一步发展,GPT 模型将在更多专业领域展现出更大的潜力和应用价值。
结束语
随着 AI 技术的不断进步,大语言模型如 GPT-4 和 ChatGPT 将在未来继续扮演重要角色,推动各行业的创新与发展。了解其基础原理、能力和应用场景,将帮助用户和开发人员更好地利用这些工具,实现更高效、更智能的解决方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。