在人工智能的赛道上,新的挑战者不断涌现,而杭州深度求索(DeepSeek)无疑是近期最耀眼的黑马。其开发的AI应用迅速风靡全球,在多个维度引发了行业震动与广泛关注,从技术实力到股权结构,从市场表现到资本反应,DeepSeek都成为当下AI领域最热门的话题。
1 、神秘股权架构:独立发展的抉择
与常见AI初创企业不同,DeepSeek股权架构十分神秘。网传股权结构图显示,它由四名自然人通过五层控股掌握100%股份(其中梁文锋间接持股比例83.2945%,直接持股1%,累计84.2945%),不见风险投资(VC)踪影。**通常,高成长性科技企业会引入VC资金助力研发与推广,DeepSeek却选择独立发展。
(天眼查截图)
或许这源于创始团队理念。幻方量化创始人梁文锋作为量化投资佼佼者,可能期望保持对DeepSeek的绝对控制权,确保技术和商业模式自由发展。 并且AI行业发展迅猛,创始团队想等技术成熟后再引入外部资金,获取更大谈判优势。但这也引发猜测,它靠什么资金支撑庞大计算资源?营收模式能否支撑长期发展?依旧是未解之谜。
2 、登顶App Store:实力铸就的超越
1月26日,DeepSeek成功登顶苹果App Store免费应用榜单,超越长期主导全球AI应用的ChatGPT,在国内外都收获极高关注度。其成功依托强大技术实力,大模型训练使用大量英伟达H100 GPU ,且团队仅约139名工程师和研究人员,与动辄上千人的OpenAI、Google DeepMind团队形成反差,凸显高效运营能力。
DeepSeek在用户体验上也表现出色,比ChatGPT提供更精准自然的语言理解能力,支持多种交互方式,让用户能更流畅地用AI对话、写作和分析数据,这些优势助力其迅速崛起。
3 、冲击英伟达:撼动行业巨头根基
DeepSeek的爆发式增长,不仅冲击AI行业,还震动全球科技股市场。1月29日,英伟达股价单日暴跌近17%,市值蒸发约5900亿美元,后续几日仍震荡下行。
DeepSeek之所以威胁到英伟达,一是改变了AI行业竞争格局。 英伟达长期靠CUDA生态系统和GPU硬件优势主导AI计算市场,而DeepSeek绕开CUDA,优化底层计算架构,大幅提高算力利用率。若更多AI公司效仿,英伟达行业控制力将被削弱。二是影响全球科技巨头投资策略。“科技七巨头”可能重新评估资本支出计划与发展方向,这种不确定性给市场施压,间接影响英伟达股价。
4、 马斯克质疑:资金与算力的谜团
面对DeepSeek的亮眼表现,特斯拉CEO马斯克表达质疑。AI行业成本高昂,他的xAI公司为训练Grok 3大模型,搭建了含10万块H100 GPU的超级计算集群。而DeepSeek能短时间取得突出成就,资金投入备受怀疑。
据Scale AI创始人亚历山大·王披露,DeepSeek至少拥有5万块H100 GPU ,但官方未回应。若此数据属实,其算力储备远超预期,在未大规模融资下如何获取大量硬件资源,成为业内关注焦点。
5、 未知与期待并存
DeepSeek的崛起为全球AI行业带来新变数,挑战ChatGPT市场地位,引发科技股震荡,让英伟达感受到压力。但它未来充满未知,能否持续技术领先、股权架构是否影响融资、能否在全球竞争中站稳脚跟,都有待时间验证。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。