评标工作是企业采购流程中的关键环节,其效率与精准性直接关系到企业的成本控制、质量保证、风险管理及战略部署。面对海量投标标书,传统的人工评审方式不仅耗时耗力,更因任务繁重而易于出错。远光软件凭借前沿的AI技术,特别是“大模型+本地知识库”的深度融合,为企业打造了一位高效、精准的“AI评标助手”。
1、“大模型+本地知识库”,提升评标工作整体效能
随着AI技术在供应链领域的广泛应用,远光软件创新性地融合了大模型、计算机视觉、自然语言处理、知识图谱及深度学习等先进技术,精心研发出全面、高效、合理的智能评标助手解决方案。这一方案无缝嵌入招采流程,直击评标痛点,不仅大幅减轻专家的评标压力,更在评标质量和效率上实现双重飞跃。
智能评标助手采用“大模型+本地知识库”的模式,通过强大的语言理解能力,精准提取标书中的关键信息,包括法人资料、技术参数、报价详情以及各类证书、资质、合同等。同时,通过强大的数据分析能力,自动化处理和分析复杂的文档,如法律法规、规章制度、技术规格、商业条款等。还可以辅助专家在评标过程中快速定位和查阅资料,挖掘重点关注信息与评标因素进行比对,既减少了人工审核的工作量,也显著提高了评标工作的处理效率和准确性。
2、五大智能评标模式,重塑评标流程
智能评标助手以AI创新应用为驱动,紧紧围绕评标流程,通过创新理念、方式方法和技术手段,构建技术标辅助评审工具,实现了初步评审智能化。系统自动解析出评审点的评审要素,对应招标文件的相应内容,得出合格、风险等评审结果。专家评审时,只需关注复核、不通过的评审点,从而减少专家评标工作量,降低评审工作复杂度,重塑评标流程。
模式1:AI赋能业务全过程,构建智能评标辅助工具
围绕评标全流程,构建智能化评标辅助工具,实现流程优化与效率提升。
高效、精准地赋能评标业务全过程
模式2:AI精准定位,快速对标评审标准
快速锁定篇幅冗长标书中的关键内容,减少专家翻阅和检索时间,提升评审精准度。
模式3:“AI+专家”协同评审,防风险提质效
对投标文件进行客观内容自动评判,主观风险AI预判,专家只需专注复核与异议点,人机协同共筑评审防线。
模式4:AI结构化应答,便捷留痕
自动对标书信息进行结构化处理,专家复核即可,极大简化了记录流程。
模式5:一键比对,AI找茬显神威
针对工程量清单,AI自动比对,精准找茬,替代繁琐人工审核。
3、评标效率提升46%,平均精度超96.50%
智能评标助手通过在系统预设规则,实现投标文件关键内容的自动定位,同时通过系统辅助优化评审方式,简化流程,提高效率。
事件证明,智能评标助手的引入带来了显著成效。以某企业某批次招标为例,42名专家对3839本标书进行评审,在智能评标助手的辅助下,单本标书耗时由15分钟缩短至8分钟,仅用13小时便完成了原本需24小时才能完成的评审工作,评标效率提升46%以上,且平均精度超过96.50%。这一成果不仅彰显了AI技术在提升评标效率与准确性方面的巨大潜力,更为企业供应链管理的优化升级提供了有力支撑。
上线前后评标效率对比
智能评标助手,不仅重塑了企业评标流程,更以其高效、精准的特性,助力企业实现供应链管理的提质增效。通过持续优化与创新,该系统正逐步成为促进绿色供应链生态圈有序健康发展的关键力量,推动企业迈向更加智能、高效的未来。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。