2025年,AI技术全面渗透各行各业,大模型和生成式AI的爆发催生了两个炙手可热的岗位:AI产品经理和大模型应用开发工程师。两者看似都与“AI”相关,但工作内容、技能要求甚至薪资结构却大相径庭。今天我们从五大维度深入对比,助你找到最适合的AI职业方向!
一、职责定位:需求洞察 vs 技术落地
1. AI产品经理
核心任务:挖掘用户需求,设计AI驱动的产品解决方案,并协调技术团队实现商业化落地。例如,设计智能客服系统时,需明确用户痛点和AI能力边界,定义交互逻辑并控制AI输出的稳定性。
关键能力:需求分析、技术理解(如大模型原理、算法适用场景)、跨部门协作(与算法工程师、数据科学家对接)。
2. 大模型应用开发工程师
核心任务:专注于大模型的算法优化、训练调参及工程部署。例如,针对特定场景(如医疗问答)对开源大模型进行微调,提升推理速度和准确率。
关键能力:算法实现(如Transformer架构)、分布式训练、性能调优(如降低GPU资源消耗)。
总结: 产品经理是“翻译官”,将业务需求转化为技术语言;开发工程师是“建造师”,将技术转化为可运行的代码。
二、技能要求:广度 vs 深度
维度 | AI产品经理 | 大模型应用开发工程师 |
---|---|---|
技术知识 | 理解机器学习、大模型基础原理,熟悉Prompt工程、LangChain框架 | 精通PyTorch/TensorFlow、掌握分布式训练、模型压缩技术 |
业务能力 | 市场洞察、用户画像分析、商业闭环设计 | 工程化思维,关注模型推理效率、资源成本优化 |
工具使用 | 需求管理工具(Jira)、数据分析工具(SQL/Tableau) | 深度学习框架、CUDA编程、云平台(AWS/Aliyun) |
三、工作流程:从设计到迭代的差异
AI产品经理的工作流: 1. 需求调研(用户访谈、竞品分析)→ 2. 技术选型(选择适合的大模型)→ 3. 原型设计(含AI交互逻辑)→ 4. 模型验收(评估准确率、容错率)→ 5. 上线后持续优化(基于用户反馈迭代)。
难点: 需平衡技术可行性与用户体验,例如避免AI在输出JSON时“自作主张”添加解释文本。
大模型开发工程师的工作流: 1. 模型选型(如LLaMA、GPT系列)→ 2. 数据预处理(清洗、标注)→ 3. 微调训练(LoRA/QLoRA技术)→ 4. 模型评估(BLEU/ROUGE指标)→ 5. 部署优化(模型蒸馏、服务API封装)。
难点: 解决长文本推理的显存溢出问题,或提升低资源环境下的推理速度。
四、薪资与前景:高薪背后的逻辑
薪资水平:
AI产品经理:平均年薪约30万-60万,资深者可突破百万。
大模型应用开发工程师:起薪20万-80万,顶尖人才(如算法优化专家)年薪可达200万。
职业前景:
AI产品经理:更适合具备商业思维、擅长沟通的复合型人才,未来可向AI战略规划或创业方向转型。
大模型应用开发工程师:技术壁垒更高,适合热爱编码、追求技术极客的人群,职业路径可延伸至算法研究员或CTO。
五、入行建议:你的DNA适合哪条路?
选择AI产品经理,若你:
✅ 喜欢从0到1打造产品,对用户体验敏感;
✅ 具备跨领域学习能力(技术+商业);
✅ 能承受“技术不确定性”带来的挑战(如模型输出不稳定)。
选择大模型开发工程师,若你:
✅ 对算法原理充满好奇,享受攻克技术难题;
✅ 数学和编程基础扎实(线性代数、Python/C++);
✅ 愿意持续追踪前沿技术(如多模态、Agent框架)。
结语
无论是AI产品经理还是大模型工程师,都是AI时代不可或缺的角色。产品经理用技术创造价值,工程师用代码定义未来。选择适合自己的赛道,持续深耕,方能在这场AI革命中脱颖而出!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。