1、Token 是什么
token
是大模型(LLM)用来表示自然语言文本的基本单位,可以直观的理解为 “字” 或 “词”。
通常 1 个中文词语、1 个英文单词、1 个数字或 1 个符号计为 1 个 token
Token(令牌)就像玩拼字游戏时的小方块,每个方块代表一个字或词。
- 中文:每个字/词是一个方块(如"北京"算1个方块,"的"算1个方块)
- 英文:每个单词或词根是一个方块(如"unhappy"会被拆成"un"和"happy"两个方块)
📌 相当于AI理解文字的最小单位,就像人看书时是一个字一个字读的
一般情况下模型中 token
和字数的换算比例大致如下:
- 1 个英文字符 ≈ 0.3 个 token。
- 1 个中文字符 ≈ 0.6 个 token。
所以,我们可以近似的认为一个汉字就是一个 token
大模型处理我们的输入也是将文本转成 token 再处理的:
2、最大输出长度
最大输出长度相当于你给AI设置的"说话时长限制"
- 比如设置为300个token,AI回答到第300个字时就会自动结束
- 就像老师让学生"用50字概括课文",学生写到第50字必须停笔
⚠️ 常见问题:回答突然中断,就像打电话突然被挂断
这里我们以 DeepSeek
为例:
上图中 deepseek-chat 模型对应 DeepSeek-V3
;deepseek-reasoner 模型对应 DeepSeek-R1
可以看到在 DeepSeek
中,无论是推理模型 R1 还是对话模型 V3 他们的最大输出长度均为 8K
。
我们已经知道一个汉字近似的等于一个 token
,那么这 8K
的意思就可以约等于说:一次输出最多不超过 8000 个字
最大输出长度这个概念非常清晰,很好理解,反正就是模型每次给你的输出最多 8000 个字,多了你就别想了,超限制了,人家做不到~~
3、上下文长度
上下文长度相当于AI的"短期记忆容量"
- 主流模型容量举例:GPT-4(128k≈10万字),Claude3(200k≈15万字)
- 如同人类大脑能同时记住的对话内容,超过就会遗忘
🌰 就像你跟朋友聊天,如果聊了3小时,对方可能记不住开头的话题
“上下文长度” 在技术领域实际上有一个专有的名词:Context Window
我们还是以 DeepSeek
为例:
可以看到无论是推理模型还是对话模型 Context Window
都是 64K
,
这个 64K
意味着什么呢 ?请继续往下看。
如果我们要给 Context Window
下一个定义,那么应该是这样:
LLM 的 Context Window 指模型在单次推理过程中可处理的全部 token 序列的最大长度,包括:
- 输入部分(用户提供的提示词、历史对话内容、附加文档等)
- 输出部分(模型当前正在生成的响应内容)
这里我们解释一下,比如当你打开一个 DeepSeek
的会话窗口,开启一个新的会话,然后你输入内容,接着模型给你输出内容。这就是一个 单次推理 过程。在这简单的一来一回的过程中,所有内容(输入+输出)的文字(tokens)总和不能超过 64K
(约 6 万多字)。
你可能会问,那输入多少有限制吗?
有。上文我们介绍了 “上下文长度”,我们知道最长 8K
,那么输入内容的上限就是:64K- 8K = 56K
总结来说在一次问答中,你最多输入 5 万多字,模型最多给你输出 8 千多字。
你可能还会问,那多轮对话呢?每一轮都一样吗?
不一样。这里我们要稍微介绍一下多轮对话的原理
多轮对话
我们仍然以 DeepSeek
为例,假设我们使用的是 API 来调用模型。
多轮对话发起时,服务端不记录用户请求的上下文,用户在每次请求时,需将之前所有对话历史拼接好后,传递给对话 API。
以下是个示例代码,看不懂没关系就是示意一下:
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
# Round 1
messages = [{"role": "user", "content": "What's the highest mountain in the world?"}]
response = client.chat.completions.create(
model="deepseek-chat",
messages=messages
)
messages.append(response.choices[0].message)
print(f"Messages Round 1: {messages}")
# Round 2
messages.append({"role": "user", "content": "What is the second?"})
response = client.chat.completions.create(
model="deepseek-chat",
messages=messages
)
messages.append(response.choices[0].message)
print(f"Messages Round 2: {messages}")
在第一轮请求时,传递给 API 的 messages 为:
[
{"role": "user", "content": "What's the highest mountain in the world?"}
]
在第二轮请求时:
- 要将第一轮中模型的输出添加到 messages 末尾
- 将新的提问添加到 messages 末尾
最终传递给 API 的 messages 为:
[
{"role": "user", "content": "What's the highest mountain in the world?"},
{"role": "assistant", "content": "The highest mountain in the world is Mount Everest."},
{"role": "user", "content": "What is the second?"}
]
所以多轮对话其实就是:把历史的记录(输入+输出)后面拼接上最新的输入,然后一起提交给大模型。
那么在多轮对话的情况下,实际上并不是每一轮对话的 Context Window
都是 64K
,而是随着对话轮次的增多 Context Window
越来越小。 比如第一轮对话的输入+输出使用了 32K,那么第二轮就只剩下 32K 了,原理正如上文我们分析的那样。
到这里你可能还有疑问 🤔 :不对呀,如果按照你这么说,那么我每轮对话的输入+输出 都很长的话,那么用不了几轮就超过模型限制无法使用了啊。可是我却能正常使用,无论多少轮,模型都能响应并输出内容。
这是一个非常好的问题,这个问题涉及下一个概念,我把它叫做 “上下文截断”
上下文截断
在我们使用基于大模型的产品时(比如 DeepSeek
、智谱清言
),服务提供商不会让用户直接面对硬性限制,而是通过 “上下文截断” 策略实现“超长文本处理”。
举例来说:模型原生支持 64K,但用户累计输入+输出已达 64K ,当用户再进行一次请求(比如输入有 2K)时就超限了,这时候服务端仅保留最后 64K tokens 供模型参考,前 2K 被丢弃。对用户来说,最后输入的内容被保留了下来,最早的输入(甚至输出)被丢弃了。
这就是为什么在我们进行多轮对话时,虽然还是能够得到正常响应,但大模型会产生 “失忆” 的状况。没办法,Context Window
就那么多,记不住那么多东西,只能记住后面的忘了前面的。
这里请注意,“上下文截断” 是工程层面的策略,而非模型原生能力 ,我们在使用时无感,是因为服务端隐藏了截断过程。
到这里我们总结一下:
- 上下文窗口(如 64K)是模型处理单次请求的硬限制,输入+输出总和不可突破;
- 服务端通过上下文截断历史 tokens,允许用户在多轮对话中突破
Context Window
限制,但牺牲长期记忆 - 上下文窗口限制是服务端为控制成本或风险设置的策略,与模型能力无关
4、各模型参数对比
各模型厂商对于 最大输出长度和上下文长度的参数设置是不一样的,我们以 OpenAI 和 Anthropic 为例,概览一下:
上图中,Context Tokens 就是上下文长度,Output Tokens 是最大输出长度。
5、技术原理
为什么要有这些限制呢?从技术的角度讲比较复杂,我们简单说一下,感兴趣的可以顺着关键词再去探索一下。
在模型架构层面,上下文窗口是硬性约束,由以下因素决定:
- 位置编码的范围:
Transformer
模型通过位置编码(如 RoPE、ALiBi)为每个 token 分配位置信息,其设计范围直接限制模型能处理的最大序列长度。 - 自注意力机制的计算方式:生成每个新
token
时,模型需计算其与所有历史token
(输入+已生成输出) 的注意力权重,因此总序列长度严格受限。KV Cache 的显存占用与总序列长度成正比,超过窗口会导致显存溢出或计算错误。
6、典型场景与应对策略
既然知道了最大输出长度和上下文长度的概念,也知道了它们背后的逻辑和原理,那么我们在使用大模型工具时就要有自己的使用策略,这样才能事半功倍。
-
短输入 + 长输出
-
场景:输入 1K tokens,希望生成长篇内容。
-
配置:设置 max_tokens=63,000(需满足 1K + 63K ≤ 64K)。
-
风险:输出可能因内容质量检测(如重复性、敏感词)被提前终止。
-
长输入 + 短输出
-
场景:输入 60K tokens 的文档,要求生成摘要。
-
配置:设置 max_tokens=4,000(60K + 4K ≤ 64K)。
-
风险:若实际输出需要更多 tokens,需压缩输入(如提取关键段落)。
-
多轮对话管理
规则:历史对话的累计输入+输出总和 ≤ 64K(超出部分被截断)。
示例:
-
第1轮:输入 10K + 输出 10K → 累计 20K
-
第2轮:输入 30K + 输出 14K → 累计 64K
-
第3轮:新输入 5K → 服务端丢弃最早的 5K tokens,保留最后 59K 历史 + 新输入 5K = 64K。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。