大模型(如GPT-4、LLaMA等)与RAG(检索增强生成,Retrieval-Augmented Generation)是互补关系,RAG通过动态检索外部数据增强大模型的生成能力,但RAG的数据不会直接“给”大模型更新其参数,而是作为上下文输入辅助生成。以下是具体分析:
1、 RAG与大模型的核心关系
大模型的局限性:
大模型依赖预训练数据,存在知识时效性差(无法覆盖最新信息)、领域专业性不足(如医疗、法律等垂直领域)以及幻觉问题(生成虚构内容)。
RAG的作用:
RAG通过实时检索外部知识库(如数据库、文档、互联网等),将相关数据片段作为上下文输入大模型,动态补充最新或特定领域知识,从而提升生成结果的准确性和可信度。
2、RAG如何与数据交互
数据流向:
RAG在生成答案时分为两步:
- 检索阶段:从外部数据源检索与用户问题相关的文档或片段(如企业知识库、最新新闻、专业论文等)。
- 生成阶段:将检索到的数据与大模型结合,生成最终回答。
关键点:检索到的数据仅作为输入上下文,不会存储到大模型参数中,也不会改变大模型本身的知识库。
数据使用范围:
- 静态大模型:传统大模型(如GPT-4)参数固定,RAG数据仅服务于单次查询。
- 动态微调模型:若大模型支持在线学习(如某些企业定制模型),RAG数据可能间接影响模型更新,但需额外训练流程(非RAG原生功能)。
3、RAG的优势与场景
解决大模型痛点:
- 知识更新:实时引入最新数据(如股票行情、政策法规)。
- 领域适配:结合企业私有数据(如客服知识库、内部文档)。
- 降低幻觉:基于检索结果生成,减少虚构内容。
典型应用场景:
- 企业智能客服(结合内部知识库)
- 法律/医疗咨询(检索专业文献)
- 金融分析(整合实时市场数据)
4、RAG vs 大模型训练数据
维度 | 大模型训练数据 | RAG检索数据 |
---|---|---|
数据用途 | 预训练模型参数,决定模型基础能力 | 单次生成时的上下文输入 |
更新方式 | 需重新训练或微调(成本高) | 实时动态检索(灵活、低成本) |
数据范围 | 通用、历史性、大规模 | 特定领域、实时性、精准片段 |
存储位置 | 编码到模型参数中 | 独立于模型,存于外部知识库 |
5、 注意事项
- 知识库质量:RAG效果高度依赖检索数据的准确性和结构化程度,需定期清洗和维护。
- 上下文长度限制:大模型的输入长度有限,需优化检索结果的压缩与摘要。
- 安全与隐私:若检索数据包含敏感信息(如用户隐私),需设计访问权限和脱敏机制。
总结
RAG通过“即查即用”的外部数据增强大模型生成能力,但不改变大模型本身的知识储备。两者的结合实现了“静态知识+动态数据”的协同,尤其适合需要实时性、专业性的场景。若需长期更新大模型知识,仍需通过微调或重新训练实现。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。