大模型入门指南 - Training:小白也能看懂的“模型训练”全解析

Training(模型训练)本质是AI世界的‘科学烹饪实验’——以数据为食材原料,用超参数作配方比例,借验证集做品控质检,将‘玄学炼丹’的试错过程,淬炼成‘可复现的精密工程’。今天用最通俗的话,带你拆解模型训练(Training)全过程。

ML/DL Foundation 1: Loss Functions and Optimizers | by Preeti Singh Chauhan  | Medium

一、概念解读

Training(模型训练) 到底是个啥?模型训练是用数据喂AI,通过算法调参数,让它从‘瞎猜’到‘精准预测’的过程。

模型训练中的专业术语如下:

  • 数据(Data):模型的课本+练习题,用于学习。类似学生通过刷题(训练数据)掌握知识点,通过模拟考(验证集)检验水平。

  • 参数(Weights):模型的大脑神经元连接强度,训练中不断调整。类似学生解题时调整解题思路(参数),使答案更接近标准答案(真实标签)。

  • 损失函数(Loss):衡量模型答案与真实答案的差距。类似学生答错题扣分(Loss升高),答对加分(Loss下降)。

  • 优化器(Optimizer):调整参数的学习方法,如梯度下降=查漏补缺。类似学生根据错题本(梯度)调整学习策略(参数),优先补薄弱科目(高Loss方向)。

  • 正则化(Regularization):防止AI死记硬背的记忆抑制器。类似学生做题时强制理解原理(L1/L2正则化),而非机械背诵。

模型训练的本质是通过参数(解题思路)不断试错、用损失函数(扣分机制)量化差距、靠优化器(错题本复盘法)迭代策略、借正则化(防机械背诵规则)强化泛化,最终在验证集(模拟考)中交出高分答卷的过程。

Model Optimization: A Quick Guide | Ultralytics

为什么需要Training(模型训练)?模型像一张白纸(随机初始化参数),无法完成任何任务,Training让模型逐步学会从输入到输出的正确映射,让模型从‘文盲’变成‘学霸’。

  • 人类学习:通过「课本+练习题+考试」掌握知识。
  • 模型训练:通过「数据+优化算法+验证集」调整参数,使模型输出接近真实答案。

模型训练中的常见问题与解决方案如下:

  • Loss不下降:模型学不会,像学生听天书。大概率是数据质量差、模型架构错误、学习率过大。这时候需要清洗数据、换模型、调小学习率。
  • 过拟合:训练集满分,测试集翻车,像学生只背题库。大概率是数据量不足、模型复杂度过高。这时候需要增加数据、简化模型、加正则化。
  • 训练速度慢:模型学得慢,像学生走神。大概率是Batch Size过大、硬件算力不足。这时候需要减小Batch Size、换GPU、分布式训练。
  • 梯度爆炸/消失:模型学崩了,像学生疯癫/昏迷。大概率是网络层数过深、激活函数选择不当。这时候需要加梯度裁剪、换激活函数(如ReLU→LeakyReLU)、残差连接。

Tips and Tricks you should know while coding your own Machine Learning Model  | by Shreyak | BlockSurvey | Medium

二、技术实现

Training(模型训练)如何进行技术实现?模型训练按‘数据预处理→架构搭建→参数调优→迭代验证’四步走。

  • 数据预处理 → “喂数据”(模型的“九年义务教育”阶段,先清洗、标注、划分数据集)
  • 架构搭建 → “搭脑回路”(选择Transformer模型架构,初始化参数)
  • 参数调优 → “刷题+改错”(损失函数扣分→优化器改参数→正则化防死记,模型的“高三冲刺”模式)
  • 迭代验证 → “周考+月考”(验证集监控过拟合,测试集“毕业考”定生死,模型的“高考质检局”)

How to generate training data for your ML system

PyTorch如何实现Training(模型训练)?PyTorch通过定义模型结构(继承nn.Module并实现前向传播),配置损失函数(如MSELoss)与优化器(如Adam),在训练循环中反向传播更新参数(通过loss.backward()和optimizer.step()),同时利用DataLoader实现数据批量加载与预处理,最终通过迭代优化使模型拟合数据。PyTorch Wrapper to Build and Train Neural Networks | by Rokas Liuberskis |  Towards AI

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import math

# 参数配置
input_dim = 10       # 输入特征维度
output_dim = 1       # 输出维度(回归任务)
seq_length = 5       # 序列长度
batch_size = 32
num_epochs = 50      # 增加训练轮次
learning_rate = 0.001
d_model = 64         # 模型维度
nhead = 4            # 注意力头数
dim_feedforward = 256 # 前馈网络维度
# 生成虚拟数据(带时序特征)
X = torch.randn(1000, seq_length, input_dim) * torch.arange(1, seq_length+1).view(1, -1, 1)
y = X.mean(dim=(1,2)).unsqueeze(-1)  # 目标:带时序权重的均值回归
# 数据标准化
X = (X - X.mean()) / X.std()
y = (y - y.mean()) / y.std()
# 封装为DataLoader
dataset = TensorDataset(X, y)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=2)
class TransformerEncoderRegressor(nn.Module):  
  def __init__(self):    
      super().__init__()        
      self.input_proj = nn.Linear(input_dim, d_model)        
      # Transformer编码器(参考网页7架构)        
      encoder_layer = nn.TransformerEncoderLayer(            
           d_model=d_model,            
           nhead=nhead,            
           dim_feedforward=dim_feedforward,            
           batch_first=True  # PyTorch 1.9+特性     
   )        
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=3)        

# 输出层(带特征聚合)       
 self.output_layer = nn.Sequential(
             nn.Linear(d_model * seq_length, 128),            
             nn.ReLU(),            
             nn.Dropout(0.1),           
              nn.Linear(128, output_dim)     
   )      
     # 位置编码(参考网页4实现)        
     self.pos_encoder = PositionalEncoding(d_model, dropout=0.1)  
       def forward(self, src):      
       # 输入投影 [batch, seq, d_model]       
        src = self.input_proj(src) * math.sqrt(d_model)       
         # 添加位置编码       
          src = self.pos_encoder(src)      
            # 编码处理 [batch, seq, d_model]        
            memory = self.encoder(src)        
            # 特征聚合 [batch, seq*d_model]        
            flattened = memory.view(memory.size(0), -1)  
                  return self.output_layer(flattened)

class PositionalEncoding(nn.Module):   
 """网页4位置编码实现(适配batch_first格式)"""   
  def __init__(self, d_model: int, dropout: float = 0.1, max_len: int = 5000):        
super().__init__()      
  self.dropout = nn.Dropout(p=dropout)      
    position = torch.arange(max_len).unsqueeze(1)        
    div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))       
     pe = torch.zeros(max_len, d_model)        
     pe[:, 0::2] = torch.sin(position * div_term)        
     pe[:, 1::2] = torch.cos(position * div_term)       
      self.register_buffer('pe', pe.unsqueeze(0))  # [1, max_len, d_model]    
      def forward(self, x):       
       x = x + self.pe[:, :x.size(1), :]      
         return self.dropout(x)# 初始化模型model = TransformerEncoderRegressor()criterion = nn.MSELoss()optimizer = optim.AdamW(model.parameters(), lr=learning_rate, weight_decay=1e-4)scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=5)# 训练循环(带验证)for epoch in range(num_epochs):    model.train()  
           total_loss = 0    
           for batch_X, batch_y in dataloader:     
              optimizer.zero_grad()        
         outputs = model(batch_X)       
          loss = criterion(outputs, batch_y)      
            loss.backward()       
             # 梯度裁剪(网页7实践)        nn.utils.clip_grad_norm_(model.parameters(), 1.0)        
             optimizer.step()       
              total_loss += loss.item()    
              avg_loss = total_loss / len(dataloader)    
              scheduler.step(avg_loss)   
               print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {avg_loss:.4f}, LR: {optimizer.param_groups[0]["lr"]:.2e}')
               # 测试推理test_input = torch.randn(3, seq_length, input_dim)  # 批量推理测试model.eval()with torch.no_grad():    prediction = model(test_input)print('Test predictions:', prediction.squeeze().tolist())

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

阅读 5

留言

写留言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值