在大模型技术席卷产业的当下,相关岗位的招聘需求呈指数级增长:
招聘热岗示例:
- 模型工程师(如:字节·大模型平台组)
- 算法实习生(大模型方向,如:腾讯 AI Lab)
- AI 应用开发工程师(如:百度文心大模型团队)
- LLM 工程研发岗(如:MiniMax、Moonshot)
然而,由于技术栈更新迅速、工程挑战高度复杂、实战能力要求极高,求职者常常陷入以下困境:
1、常见求职痛点
- 面试题高度碎片化,缺乏系统学习路径
例:只刷 HuggingFace 教程或B站视频,却无法建立知识体系;碰到 “请你讲讲 KV Cache 的工作机制及优化方案” 就答不出来。
- 项目经验雷同,无法形成差异化竞争力
例:简历上都写 “构建了一个基于 LangChain 的问答系统”,但面试官追问“RAG 系统中的 Chunking 策略和召回机制”时无从应对。
- •理论与实战脱节,难以应对 Coding / 系统设计问题
例:知道 Attention 的公式,但做不出“实现简化版 Self-Attention 的伪代码”;也难以回答 “如何让大模型服务在 500ms 内响应用户请求?”
- 缺少对热点方向的深度理解与实操
例:只会使用开源模型部署 demo,面对 “请你优化一个多模型并发推理系统(多卡 + 多实例)” 或 “请设计一套 Agent 多角色协作调度机制” 时无从下手。
在这样的背景下,《百面大模型》应运而生,成为打通 LLM 求职与实战的关键工具书。
本书不是“背题集”,而是一部从知识体系、工程实战到项目落地全面覆盖的实战宝典,让你从“知道”到“能做”,再到“能讲清楚”。
2、为什么你需要这本书?
通过对招聘平台、GitHub、知乎与面经社区的分析发现,大模型相关岗位的面试内容,主要集中在以下五大模块:
(1)LLM 基础与原理类问题
面试官常问:
- Transformer 的核心机制是什么?
- 为什么 Self-Attention 能捕捉长距离依赖?
- 微调 vs LoRA 的本质区别是什么?
这些问题考察的是你对 LLM 架构底层的理解,是所有岗位的基础门槛。
(2)工程与系统能力考察
重点考查以下技术栈:
- 推理加速:KV Cache 工作原理?LoRA 如何与主模型高效融合?
- 服务部署:vLLM、TGI 如何支持多租户?如何实现高并发推理?
- 分布式训练:DeepSpeed ZeRO 分层机制?FSDP 优于 DDP 的关键在哪?
这类题不仅考察技术掌握,还看你是否具备“系统工程”视角。
(3)实战项目设计题
经典高频问题:
- 如何构建一个 支持上下文记忆 的多轮对话系统?
- 从 0 到 1 设计一个 RAG 系统,你会如何选型和优化?
- 面向 C 端用户的智能体(Agent)系统,如何调度角色并防止 hallucination?
这类题最能拉开差距,项目理解深度决定你是否能胜任工程实践。
(4)评估与对齐类问题
包括但不限于:
- RLHF 的三阶段训练流程?
- 指令微调与 SFT 的区别?
- 如何设计 Prompt 来提升模型对齐性?
“对齐”问题正成为大模型落地的核心门槛,很多中高阶岗位必问。
(5)开源生态与工具库认知
常见要求:
- LLaMA、Mistral、Qwen 模型的差异与适用场景?
- Transformers、LangChain 的核心模块与使用技巧?
- 如何用 OpenChatKit 快速搭建一个 SFT 流水线?
工程岗与应用岗面试官普遍希望候选人能做到“调得动 +讲得清 +改得快”。
3、《百面大模型》为你解决什么?
面对这些挑战,《百面大模型》从实际面试需求出发,采用:
面试题 × 技术点 × 项目实战 的三位一体结构
帮助你构建从 知识扫盲 → 工程落地 → 面试通关 的完整成长路径。
- 不只是告诉你“答案”,而是系统拆解“原理 + 实现 + 实战”
- 每一类问题背后都有 真实岗位能力需求作为支撑
- 每一章都配有“代码实战 + 工程图解”强化理解
4、 内容结构一览
《百面大模型》围绕 100 道核心面试题 精心编排,覆盖大模型学习与就业所需的全链路能力,内容共分为 五大部分:
第一部分:大模型的基础知识(第1章 - 第3章)
-
第1章 语义表达:从稀疏词向量到BERT嵌入类型,详解语义建模的基础与演进。
-
第2章 大模型的数据:涵盖训练数据集、预处理、数据扩展法则与灾难性遗忘问题。
-
第3章 大模型的预训练:梳理预训练方法与流程、显存优化、通信开销和训练效率提升策略。
第二部分:对齐与微调机制(第4章 - 第5章)
- 第4章 大模型的对齐:系统解析对齐数据、PPO与DPO等强化学习方法,以及训练稳定性问题。
- 第5章 大模型的垂类微调:聚焦于监督微调、词表扩展、外推能力、知识注入和定制化损失函数。
第三部分:大模型组件与架构(第6章 - 第8章)
- 第6章 大模型的组件:全面介绍Transformer架构、注意力机制、RoPE/ALiBi、归一化、Dropout与初始化等关键模块。
- 第7章 大模型的评估:分析评测榜单、生成式评估指标、自动化与对抗性测试及备案流程。
- 第8章 大模型的架构:讨论因果解码器主流架构、融合机制与稀疏专家模型(MoE)。
以下是 MoE 的图解,可以很好帮助我们理解:
第四部分:大模型关键应用实践(第9章 - 第11章)
- 第9章 检索增强生成:系统阐述RAG组成、召回与重排策略、以及工程化实现挑战。
- 第10章 大模型智能体:探讨智能体组成、规划、记忆、工具调用与主流框架如XAgent、AutoGen。
- 第11章 大模型PEFT:讲解LoRA、各类参数高效微调方法及其与全参数微调的差异。
第五部分:训练优化与代表性大模型解析(第12章 - 第13章)
- 第12章 大模型的训练与推理:深入FlashAttention、PagedAttention、专家并行、量化、并行训练策略等加速与优化技术。
- 第13章 DeepSeek:剖析DeepSeek模型的创新架构(如MLA与多词元预测)及其训练流程,提供典型国产大模型参考样本。
适合读者
如果你属于以下几类人群,这本书就是为你量身打造:
- 算法工程师 / 后端开发者:希望顺利转型 LLM 岗位,构建系统知识图谱
- 在校学生 / 研究生:准备大模型方向实习、校招,系统扫盲 + 精准刷题
- 已入职 LLM 团队成员:补齐从原理到部署的工程知识盲区
- AI 应用工程师 / 创业者:希望从 0 到 1 搭建 LLM 应用系统,落地 RAG / Agent 项目
总结:不只是“背题”,而是“破题+解法+实战”
《百面大模型》不是一本简单的面试题集,而是一本融合原理讲解 × 工程实践 × 面试突破的实战型技术参考书:
- 用真实面试题引导学习路径,建立大模型知识框架
- 用项目实战拆解技术细节,提升开发与部署能力
- 用大厂真题沉淀方法论,帮助你从“会答题”走向“能解题”
求职通关,只是起点;构建系统技术力,才是你的长期核心竞争力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。