Stable Diffusion 快速创作角色三视图

今天分享分享如何通过 Stable Diffusion 快速创造出角色三视图。

这节会涉及到 ControlNet 中的 openpose 模型和 LoRA模型 CharTurnerBeta - Lora (EXPERIMENTAL)(这个模型非必备哈)。

如果你忘了 ControlNet 的使用,可以翻看前面的教程哦。

一 流程介绍

整个流程原理很简单,我们通过使用 ControlNet Openpose 模型根据我们上传的三视图骨骼图进行渲染。结合 CharTurnerBeta
Lora 模型增强效果。最后就能得到一张角色三视图

CharTurnerBeta Lora 的权重在 0.2-0.4 之间

二 使用

第一步:设置基础参数

模型:Deliberate_v2  
提示词:(white background:1.5),A photographic style character turnaround of a an 1800's flamboyant pirate captain with a big feather in his hat and a peg leg. Parrot, eyepatch, mustache, grin, highly detailed face. Multiple views of the same character in the same outfit,<lora:mw_charturn3:0.4> charturnbetalora  
采样方法:DPM++ 2M SDE Karras  
种子:703262763  
宽高:880x512  
adetail:face_yolov8s.pt  



  * 1
  * 2
  * 3
  * 4
  * 5
  * 6
  * 7

如果不启用 ControlNet 直接出图看看效果

有一点点效果,但是三视图的效果不是很好,接着我们设置 ControlNet

第二步:启用ControlNet

上传三视图特征图(不需要设置
预处理器),只需要将 ControlNet 模型设置为 openpose 模型。原图:https://images-1257364845.cos.ap-
nanjing.myqcloud.com/6461E5A8-C04E-81C2-5CD7-BE8498BAE365.jpeg%60%20-%3E%20%60Image.jpeg

接着我们再次出图看看效果

这一次效果就好很多了。三视图特征图大家也可以通过其它渠道或者自己通过 3d openpose 自己设置。

在来看看其他模型的三视图效果图

如果你觉得课程还不错,别忘了把好内容分享给身边的小伙伴哦 📢

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

在这里插入图片描述

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

在这里插入图片描述

### Stable Diffusion 模型结构及组成 #### 一、模型概述 Stable Diffusion 是一种基于深度学习的图像生成模型,能够依据给定的文字描述创建逼真的图片。该模型通过一系列复杂的神经网络层实现从随机噪声到特定风格或内容图像的变化过程。 #### 二、主要组件及其功能 ##### 1. 编码器 (Encoder) 编码器负责接收输入文本并将其转化为潜在空间中的表示形式——即一组数值向量。这些向量捕捉到了原始数据的关键特征,并作为后续处理的基础[^4]。 ##### 2. 扩散模型(Diffusion Model) 具体来说,在Stable Diffusion中采用的是U-Net架构的扩散模型。它接受由编码器产生的条件信息(如文本嵌入),并通过迭代的方式逐步减少加入到初始纯噪音上的扰动程度,最终得到一张清晰的目标图像。 ##### 3. 解码器(Decoder)/VAE(Variational Autoencoder, 变分自编码器) 解码部分通常被称为变分自动编码器(VAE),其作用是从低维隐含表征重建高分辨率的真实世界对象视图。此过程中涉及到两个重要子单元:ResNetBlock 和 SelfAttention机制,前者有助于保持局部细节的一致性;后者则增强了全局上下文理解能力[^2]。 ```python import torch.nn as nn class ResNetBlock(nn.Module): def __init__(self, channels): super().__init__() self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(channels) def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out += identity out = self.relu(out) return out class SelfAttention(nn.Module): """简化版Self Attention""" ... ``` #### 三、工作流程简介 整个系统的运作始于用户提供的文字指令,经过预训练的语言模型转换成适合机器解读的形式后送至上述提到的核心部件内完成创作任务。期间还允许调整多种参数设定来微调产出效果,比如采样步数、指导权重等[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值